
Language-oriented programming in Racket

—A cultural anthropology—

Jesse Alama

jesse@lisp.sh

1

WTF is “language-oriented programming”?!

2

WTF is “language-oriented programming”?!

I kinda-sorta know.

3

WTF is “language-oriented programming”?!

I kinda-sorta know.

There are some canonical resources.

4

WTF is “language-oriented programming”?!

I kinda-sorta know.

There are some canonical resources.

But I’m just one Racket programmer.

5

WTF is “language-oriented programming”?!

I kinda-sorta know.

There are some canonical resources.

But I’m just one Racket programmer.

How does the idea play out in practice among other
Racketeers?

6

Survey: Question 1

Can you point to an example or two of your own work that
best exemplifies what you consider to be LOP? Even if you
haven’t made your own language, but work within (or
teach) something other than “full-on” Racket, feel free to
mention it.

7

Survey: Question 2

If you’ve made your own language, what was your
motivation? Did you just want to experiment? Was there
some pain that you faced that a new language could
alleviate?

8

Survey: Question 3

What about an example or two of LOP in the work of others
that you find impressive or inspiring (not even necessarily
from the Racket world)?

9

Survey: Question 4

Can you identify an “aha!” moment or two when your
understanding of LOP evolved?

10

Survey: Question 5

Is there a book, paper, video, course, or any other material,
that you would recommend to Racket newcomers to help
unlock LOP? How did you yourself get started with that
idea?

11

Survey: Question 6

If you’ve made you own language, do you recall whether
there were moments where you hesitated before going
down that path? Or, once you were on that path, were there
stumbling blocks hindered your progress? If you’ve not
made your own language but have considered it, what
uncertainties do you face?

12

Survey: Question 7

The technicalities and mechanics that go into making your
own language can be difficult compared to other
“everyday” ideas in computer science: lexing, parsing,
macros, phase separation, evaluation, semantics. Do you
find some of these ideas easier to appreciate (and execute
on) than others?

13

Survey: Question 8

What’s your experience talking with others outside the
Racket world about Racket and its language-oriented
philosophy? Do you find that there are frequently recurring
sticking points, misunderstandings, or other obstacles in
discussions about “make your own language”?

14

Survey: Question 9

Can you of situations where “make your own language” is
definitely not an appropriate way to tackle a problem? Have
you yourself made your own language only to realize later
that it adds little value, or was over-engineering? When do
you decide to make a language as opposed to just making a
library?

15

The Responses

• Surveyed people by looking through the official PLT list,
list of people participating in previous RacketCons, etc.

• Responses came in from 30 Racket developers.

• I made an ebook out of it. It weighs 315 pages.

16

LOP Groups

• enthusiastic embracers

17

LOP Groups

• enthusiastic embracers

• jaded professionals

18

LOP Groups

• enthusiastic embracers

• jaded professionals

• fellow travelers

19

LOP Groups

• enthusiastic embracers

• jaded professionals

• fellow travelers

• “mere” users

20

LOP Groups

• enthusiastic embracers

• jaded professionals

• fellow travelers

• “mere” users

• would-like-to-ers

21

LOP inside Racket

• Racket itself is a large-scale example

• A new #lang

• Using a metalanguage (e.g., s-exp)

• Reader hacking

• Racket + macros (no #lang)

• Interpreter that evaluates S-expressions

22

LOP outside Racket

• Ward’s language-oriented programming (1994)

• Spoofax

• MPS (JetBrains)

• Macros & macro-like features in other Lisps & non-Lisp
languages

• Embedded DSLs in Haskell, JavaScript, etc.

23

Our Problems

24

Rough path ahead

Racket smoothes the path for making a language.

25

Rough path ahead

Racket smoothes the path for making a language.

BUT:

26

Rough path ahead

Racket smoothes the path for making a language.

BUT:

The “API” is still a a bit hard, even for experienced
Racketeers.

27

Evangelism

Promoting Racket is hard

28

Surface syntax!

• Even some Racketeers don’t especially like the
parentheses.

• Others work as long as possible with S-expressions.

• When selling Racket to others, surface syntax might be
crucial.

29

Recurring themes

• Beautiful Racket

• Racket Summer School

• Teaching languages

• Racket itself as an examplar of LOP

• Exemplary languages: Scribble, Typed Racket, Hackett,
Turnstile, Redex

30

The stars of the show

Eli Barzilay

Annaia Berry

Jörgen Brandt

Matthew Butterick

Ngugyen Linh Chi

Christos Dimoulas

Joel Dueck

31

The stars of the show

Kathi Fisler

Matthew Flatt

Spencer Florence

Stephen Foster

Tony Garnock-Jones

Panicz Godek

Ben Greenman

32

More stars!

Eric Griffis

Andrew Gwozdziewycz

William Hatch

Shriram Krishnamurthi

Jay McCarthy

Darren Newton

Pavel Panchekha

33

More stars!!

Daniel Prager

Praghakar Ragde

Michael Sperber

Vincent St-Amour

Asumu Takikawa

Éric Tanter

Emina Torlak

34

Final stars

Jesse Tov

Jon Zeppieri

35

Final stars

Jesse Tov

Jon Zeppieri

YOU?

36

