Generic Collections

One Interface to Rule Them All



What are
“generic collections”?




What is a collection?




What is a collection?

1 2 3




What is a collection?

1 2 3

hold values.



Racket has lots of collections!

Lists Streams
Vectors Growable Vectors
Hash Maps Hash Sets
Queues Arrays




Q: How often do people
actually use non-lists?




A: Not nearly
enough.







But are they good enough?

Lists Streams
immutable immutable
Vectors Growable Vectors
mutable by default always mutable
Hash Maps Hash Sets
immutable by default immutable by default
Queues Arrays
always mutable immutable by default



But are they good enough?

Lists Streams
immutable immutable
Ve S Growable*ectors
le by default ays mutable
Hash Maps Hash Sets
immutable by default immutable by default

Que Arrays

s mutable immutable by default




1t’s all about the APIs.

Lists Vectors
map vector-map
filter vector-filter

reverse
for/1list for/vector
group-by




1t’s all about the APIs.

Lists Vectors
map ;ﬁ;ﬁ;ﬁﬂﬂﬁﬂ;‘
filter ter
reverse
for/1list fo or

group-by




Enter generic
collections.




Generic collections
provide a uniform
interface to all
collections while
keeping the base set
of primitives small.




Primitives

'(4 1 2 3)

conj #/1 2 3 4
"#(1 2 3 4)

conj (set 1 2 3) 4
(set 1 3 2 4)

conj (set 1 2 3) 3
(set 1 3 2)

set-nth '(1 2 3) 1 'b
'(1 b 3)

set-nth # 1 2 3 1 'b
'#(1 b 3)

extend # '(1 2 3)
'#(1 2 3)



Primitives

first '(1 2 3)

rest '(1 2 3)
'(2 3)
first #/1 2 3

rest #. 1 2 3
#<random-access-sequence>

nth '(1 2 3) 1

2

nth #.1 2 3 1
2

random-access? '(1 2 3)
#t

random-access? #(1 2 3
#t



The Basics

require alexis/collection
third #/1 2 3

set-nth (stream 'a 'b 'c 1 'B
#<stream>

sequence->list (set-nth (stream 'a 'b 'c) 1 'B
'(a B c)

apply + (set 112 3 5 8
19




lmmutability

first (vector 1 2 3
first: contract violation
expected: sequence?, which must be immutable
given: '#(1 2 3), which is mutable
in: an and/c case of
the 1st argument of
(-> (and/c sequence? (not/c empty?)) any)
contract from:
<pkgs>/alexis-collections/alexis/collection/collection.rkt
blaming: top-level
(assuming the contract is correct)
at: <pkgs>/alexis-collections/alexis/collection/collection.rkt:44.3




What about the
important functions?




foldl + 06 '"(1 2 3)

6
foldl + 0 #/1 2 3
6
foldl + @ (set 1 2 3
6
foldl + © (stream 1 2 3
6

foldl + @ '"(1 2) # 3 4 set 5 6 stream 7 8
36




Q: What do we do for
variadic functions that
return collections?

map + '(1 2 3) #4 5 6




A: Don’t return a
concrete sequence...
return a continuation!




This sounds a lot
like lazy sequences.




map and filter

map + '(1 2 3) # 4 5 6
#<stream>

filter even? (set 1 2 3456 7
#<stream>




map and filter

sequence->1list ‘map + '(1 2 3) #4 5 6
'(5 7 9)

sequence->list (filter even? (set 1 2 3456 7
'(2 4 6)




| aziness is free!

define lazy-seq (map addl (range 20
lazy-seq
#<stream>
nth lazy-seq 15
16




Laziness is fun (and useful)!

define squares (map (A (n x N n naturals
nth squares 25
625
define fibs (streamx 1 1 (map + fibs (rest fibs
sequence->1list (take 15 fibs
'(1 12 358 13 21 34 55 89 144 233 377 610)
define random-letters
map integer->char (map (curry + 65 randoms 26
sequence->string (take 15 random-letters
"WEDWOHVSYILHTYN"




Genericism can be more efficient!

reverse '(1 2 3 4)
'(4 3 2 1)
reverse 1 2 3 4
<random-access-sequence>
first (reverse 1 2 3 4




Is this idiomatic
Racket?




for X (take 5 (randoms
displayln x
.3295752491223747
.4017/54319/7993419
.5215969193941353
.27070311580464435
.21192086885672548

O OMOMOMO,



for loops

define lazy
for/sequence X in-indexed (take 5 (randoms 10
cons 1 X

lazy
#<stream>

sequence->list lazy
'((0 . 1) (1. 7) (2 .7) (3 .4) (4.9))




for loops

define squares
for/sequence X (naturals
x X X

squares
#<stream>

sequence->1l1st (take 5 squares
'(0 1 4 9 16)




Loops are extensible with
for /sequence/derived.




match (stream 1 2 3 4
sequence a b ¢ d) c

match (stream 1 2 3 4
sequence a b ... c) b
'(2 3)
match (naturals
sequence a b

cons a b
'(@ . #<stream>)



Ccontracts

define/contract (sum seq
sequenceof number?) . -> . number?
foldl + 0 seq

sum (range 50
1225

sum '(1 2 something-else 4)
sum: contract violation
expected: number?
given: 'something-else
in: an element of
the 1st argument of
(-> (sequenceof number?) number?)
contract from: (function sum)
blaming: top-level
(assuming the contract is correct)
at: eval:1.0






Thank youl!

Packages

raco pkg install alexis-collections
raco pkq install alexis—-pvector
raco pkg install alexis-collection-lens

GitHub
http://github.com/lexi-lambda



