
the racket

manifesto
matthias, racketeer

26 January 1995

Haskell is a purely functional, lazy language.

Python is about the one way, the obvious way.

What is Racket?

So what about Racket?

racket is a

programming-

language

programming

language

The next 700 languages?

The next 7,000 languages?

The next 70,000 languages?

The next 700,000 languages?

Why many languages?
Isn’t Racket enough?

Problems to be solved:
— database of people & roles
— security policies
— list of papers
— paper-reviewer mapping
— review policies
— …

Imagine Conference Management

Features supported:
— for and while loops
— methods
— classes
— modules
— packages

People don’t speak one English.
They speak many.

CEO

CFO
CTO

COO

Counsel

CIO

execute

Finance
technology

operations

legalese

information

English

Fi
na

nc
ia

ls

O
pe

ra
tio

ns

In
fo

rm
at

io
n

Te
ch

no
lo

gy

Le
ga

le
se

Racket

D
SL

 C
FO

D
SL

 C
O

O

D
SL

 C
IO

D
SL

 C
TO

D
SL

 C
ou

ns
el

Racket

D
SL

 C
TO

D
SL

 C
FO

D
SL

 C
O

O

D
SL

 C
IO

D
SL

 C
ou

ns
elEmbedded DSL

“Fluent” Interfaces

Racket

“Little Language” DSL

“Hard” Interfaces

How do you build these “DSLs”?

Hygienic
Macros!

#lang setup/infotab

#lang scribble/manual

#lang redex

Integrity from Phases
Scope from Hygiene

Linguistic Reuse
from Modules

Features from Macros “Nativeness” from
Syntax Objects

(Embedded) DSL Compilers

Flexibility from
Reinterpretation

“Errors” from “Parse”

Surface Syntax from parser-tools

(provide

	 (except-out	 (all-from-out	 lazy)	 #%app)

	 (rename-out	 (trace-suspend	 #%app)))

(require	 lazy)

(define-syntax-rule	

	 	 	 (ω	 x)

	 	 	 (lambda	 (x)	 (x	 x)))(provide	

	 	 (rename-out	

	 	 	 	 [suspend	 #%app]))

>	 (let	 ([x	 42	 “hello”])	 x)

let:	 bad	 syntax

(syntax-parse	 stx	

	 	 (let	 b:unique-binders

	 	 	 	 b:body	 b*:body	 …⋯)

compiler effects don’t
affect generated code

(define cons expt)
(let ([x (cons 1 1)]) x)

==>

(define cons expt)
((lambda (x) x) (cons 1 1))

#lang datalog

edge(a, b).
edge(b, c).
edge(c, d).
edge(d, a).

path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).
path(X, Y)?

How do you safely
compose components

in different DSLs?

Racket

D
SL

 C
TO

D
SL

 C
FO

D
SL

 C
O

O

D
SL

 C
IO

D
SL

 C
ou

ns
elCOO invariants

CFO invariants

Racket

how do you protect
these values?

?

impersonators,
chaperones, and

contracts

sandboxes and access

inspectors and code
control

threads and time

wills and executors

Composing DSL Components

custodians and resources
events and event spaces

#lang racket

(provide
 (contract-out
 (open
 ;; pops up a currently invisible area
 (-> (and/c window? invisible?)
 (and/c window? top-level?)))))

Are all DSL problems solved?

racket is a

full-spectrum

programming

language

R
acket

ASM Racket (?)

VeriRacket

Typed Racket

Contract Racket

Racket Racket

FFI Racket

R
acket

ASM Racket (?)

VeriRacket

Typed Racket

Contract Racket

Racket Racket

FFI Racket

It’
s

tim
e

to
 s

ay
 t

ha
nk

s.

… and many more

R
acket

ASM Racket (?)

VeriRacket

Typed Racket

Contract Racket

Racket Racket

FFI Racket

fu
ll-

st
ac

k
la

ng
ua

ge

#lang	 racket

(provide

	 ;;	 Image	 Number	 Number	 Image	 ->	 Image

	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 place)

…⋯

(define	 (place	 obj	 x	 y	 background)

	 	 (define	 width	 (width	 background))

	 	 (define	 hight	 (height	 background))

	 	 (unless	 (and	 (<=	 0	 x)	 (<	 x	 width))

	 	 	 	 (error	 'place	 "bad	 x"))

	 	 (unless	 (and	 (<=	 0	 y)	 (<	 x	 hight))

	 	 	 	 (error	 'place	 "bad	 y"))

	 	 (place-proper	 obj	 x	 y	 background))

#lang	 racket

(provide

	 (contract-out

	 	

	 	 ;;	 Image	 Number	 Number	 Image	 ->	 Image

	 	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 	 (place

	 	 	 (->i	 ((obj	 image?)

	 	 	 	 	 	 	 	 	 (x	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (width	 bg))))

	 	 	 	 	 	 	 	 	 (y	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (height	 bg))))

	 	 	 	 	 	 	 	 	 (bg	 image?))

	 	 	 	 	 	 	 	 (result	 image?)))))

…⋯

(define	 (place	 obj	 x	 y	 background)

	 (place-proper	 obj	 x	 y	 background))

#lang	 racket

(provide

	 (contract-out

	 	

	 	 ;;	 Image	 Number	 Number	 Image	 ->	 Image

	 	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 	 (place

	 	 	 (->i	 ((obj	 image?)

	 	 	 	 	 	 	 	 	 (x	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (width	 bg))))

	 	 	 	 	 	 	 	 	 (y	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (height	 bg))))

	 	 	 	 	 	 	 	 	 (bg	 image?))

	 	 	 	 	 	 	 	 (result	 image?)))))

…⋯

(define	 (place	 obj	 x	 y	 background)

	 (place-proper	 obj	 x	 y	 background))

#lang	 typed/racket

(provide

	 (contract-out

	 	

	 	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 	 (place

	 	 	 (->i	 ((obj	 image?)

	 	 	 	 	 	 	 	 	 (x	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (width	 bg))))

	 	 	 	 	 	 	 	 	 (y	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (height	 bg))))

	 	 	 	 	 	 	 	 	 (bg	 image?))

	 	 	 	 	 	 	 	 (result	 image?)))))

…⋯

(:	 place	 (->	 Image	 Number	 Number	 Image	 Image))

(define	 (place	 obj	 x	 y	 background)

	 (place-proper	 obj	 x	 y	 background))

#lang	 typed/racket

(provide

	 (contract-out

	 	

	 	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 	 (place

	 	 	 (->i	 ((obj	 image?)

	 	 	 	 	 	 	 	 	 (x	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (width	 bg))))

	 	 	 	 	 	 	 	 	 (y	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (height	 bg))))

	 	 	 	 	 	 	 	 	 (bg	 image?))

	 	 	 	 	 	 	 	 (result	 image?)))))

…⋯

(:	 place	 (->	 Image	 Number	 Number	 Image	 Image))

(define	 (place	 obj	 x	 y	 background)

	 (place-proper	 obj	 x	 y	 background))

Brian LaChance

#lang	 typed/racket

(define-signature	 Server%

	 	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 	 ([place	 :	 (->	 Image	 Number	 Number	 Image)]))

(define-type	 Server@

	 	 (Unit

	 	 	 (import	 Server%)

	 	 	 (export	 Server%)

	 	 	 Boolean))

#lang	 dt/racket

(provide	

	 	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 	 place)

…⋯

(:	 place	 (->	 Image	 Number	 Number	 Image	 Image)

	 suchthat

	 (->i	 ((obj	 image?)

	 	 	 	 	 	 	 (x	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (width	 bg))))

	 	 	 	 	 	 	 (y	 (bg)	 (and/c	 (>=/c	 0)	 (</c	 (height	 bg))))

	 	 	 	 	 	 	 (bg	 image?))

	 	 	 	 	 	 (result	 image?)))

	

(define	 (place	 obj	 x	 y	 background)

	 (place-proper	 obj	 x	 y	 background))

Andrew Kent

And we can also go in the other direction.

#lang	 racket

(provide

	 ;;	 Image	 Number	 Number	 Image	 ->	 Image

	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 place)

…⋯

(define	 (place	 obj	 x	 y	 background)

	 	 (define	 width	 (width	 background))

	 	 (define	 hight	 (height	 background))

	 	 (unless	 (and	 (<=	 0	 x)	 (<	 x	 width))

	 	 	 	 (error	 'place	 "bad	 x"))

	 	 (unless	 (and	 (<=	 0	 y)	 (<	 x	 hight))

	 	 	 	 (error	 'place	 "bad	 y"))

	 	 (place-proper	 obj	 x	 y	 background))

#lang	 racket

(provide

	 ;;	 Image	 Number	 Number	 Image	 ->	 Image

	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 place)

…⋯

(define	 (place	 obj	 x	 y	 background)

	 	

)

FFI Calls for
Speed

#lang	 racket

(provide

	 ;;	 Image	 Number	 Number	 Image	 ->	 Image

	 ;;	 (place	 obj	 x	 y	 bg)	 puts	 obj	 at	 (x,y)	 on	 bg

	 place)

…⋯

(define	 (place	 obj	 x	 y	 background)

	 	

)

ASM Code
for Speed

More work to be done.
Coming to a RacketCon near you real soon.

racket internalizes

 IDE tools and

operating system

concepts

Racket

What does it take to build DrRacket in Racket?

?

composing classes
at run time

linking modules
at run time

Racket internalizes features of IDEs and Operating Systems.

inspectors
provide access rights

NO PROJECTS

From MATTHIAS to ROBBY, MATTHEW:

 Could DrRacket link the name of the primitive
 to its docs in error messages, especially in *SL?

From ROBBY to MATTHIAS, MATTHEW:

 That would require keeping compile time
 info around at run time.

From MATTHIAS to ROBBY, MATTHEW:

 Why? Can’t DrRacket just map the primitives.

From ROBBY to MATTHEW, MATTHIAS:
 I want to make sure it works INSIDE OF RACKET.

Dinner: Brian, Dunkin, Fare, and Matthias

Brian:
 Isn’t it amazing that you never need to program
 the compiler and macro stages explicitly?

Fare, Dunkin:
 What???

Brian:
 Just use (require x) (for-syntax x) (for-template x))
 and Racket FIGURES IT ALL OUT ON ITS OWN.

racket design

needs

a feedback loop

…

take away

1. Racket is a programming-language
programming language.

2. Racket is a full-spectrum
programming language.

3. Racket internalizes facilities from
its context (IDE, OS) as needed.

Racket lives inside an
 academic feedback loop.

Racket needs you.

thank you

Claire Alvis, Yavuz Arkun, Ian Barland, Eli Barzilay, Gann Bierner, Stephen
Bloch, Matthew Butterick, Filipe Cabecinhas, Stephen Chang, Richard
Cleis, John Clements, Richard Cobbe, Greg Cooper, Ryan Culpepper,

Eric Dobson, Carl Eastlund, Moy Easwaran, Will Farr, Michael Filonenko,
Burke Fetscher, Kathi Fisler, Cormac Flanagan, Sebastian Good, Paul

Graunke, Kathy Gray, Dan Grossman, Arjun Guha, Dave Gurnell, Tobias
Hammer, Bruce Hauman, Dave Herman, Blake Johnson, Casey Klein,
Alex Knauth, Geoffrey S. Knauth, Mark Krentel, Mario Latendresse,

Guillaume Marceau, Gustavo Massaccesi, Jacob Matthews, Jay McCarthy,
Mike T. McHenry, Philippe Meunier, Scott Owens, David T. Pierson, Jon

Rafkind, Jamie Raymond, Grant Rettke, Paul Schlie, Dorai Sitaram,
Francisco Solsona, Mike Sperber, Vincent St-Amour, Paul Steckler, Stevie
Strickland, James Swaine, Jens Axel Søgaard, Sam Tobin-Hochstadt, Neil
Van Dyke, David Van Horn, Anton van Straaten, Asumu Takikawa, Kevin

Tew, Neil Toronto, Dale Vaillancourt, Dimitris Vyzovitis, Stephanie
Weirich, Noel Welsh, Adam Wick, Danny Yoo, and ChongKai Zhu.

