
Rocking with Racket

Marc Burns 
Beatlight Inc

What am I doing here?

My first encounter with Racket was in 2010

I wanted to use Racket in industry

The opportunity arose in June 2014: Loft

What am I doing here?

My first encounter with Racket was in 2010

I wanted to use Racket in industry

The opportunity arose in June 2014: Loft

June 2014: 
Founded

October: 
Technical prototype

November: 
Begin work on alpha

April 2015: 
Alpha complete

August: 
Private beta complete

June: 
5e5 stems, 
100 users

September: 
Details, polishing

November: 
Release?

Context
We connect artists and producers around the world 
 
We’re a 4-person team (2 engineers)

Technical challenges:

• Searching ~1e6 stems (short clips of notated music)

• Music editing and digital FX in the browser

• Search tools (query-by-hum, compatibility)

• Handling money

• Concurrent interactive editing

Why Racket?
We evaluated a few languages and frameworks before writing any code

• JavaScript with node.js is too full of explicit CPS and
weird/unexpected automatic conversions +
behaviour of builtins

• C++ is too low-level; even simple functionality
requires a lot of work to achieve (Boost compounds
the problem)

• Python is great, but libraries for PostgreSQL
interaction aren’t well-maintained

Why Racket?

• Racket comes with an excellent PostgreSQL library
and a fairly mature typed variant

• Macros are also very attractive (a double-edged
sword, as we’ll see…)

• Fringe benefit: It might make the job of finding new
engineers a bit easier

• Most importantly, simple functionality is easy to
implement and the resulting code is clear

June 2014

(define (loft.user id)
 (match-define
 (vector name email)
 (query-value SELECT name |,| email
 FROM loft.user WHERE id = ,id)) 
 (lambda (action . args)
 (case action
 [(get-name) name]
 [(set-name)
 (set! name (first args))
 (save!)]
 …)))

• This started to turn into a full-blown ORM

• The approach was too general

• Ad-hoc object system

• No introspection in code using the data model
> (define alice (loft.user 34))  
> alice
#<procedure> 
> (alice ‘set-shoutout mp3-bytes)

• Bad use of macros: Made the defining code clear
but produced code that was opaque and full of
opportunities for bugs!

[an exotic exception is thrown by an unrelated module]

What about the rest?

• We used the Racket web framework with in-
memory continuations (the server had state for auth
and pagination)

• Requests could also be performed over WebSocket

• Had nginx sitting in front of Racket for SSL
termination and static content

• Many problems…

• Messy: Parsing HTTP twice (nginx, Racket),
separate code for HTTP and WebSocket sessions

• State makes scaling up difficult

• Many concurrent connections could overwhelm db
connection pool

• Lots of bugs resulting from values passed in the
wrong place or wrong types

• Adding contracts only made the bugs more clear

• nginx and Racket don’t play well like this: too many
files, TCP connect overhead x6

Maybe we should move to Typed Racket 
and overhaul our architecture.

April 2015

April 2015

(define-type Social<%>
 (Class
 [get-tags (-> (Sequenceof String))]
 [add-tag (String . -> . Void)]
 [check-access (Actor Access . -> . Boolean)]
 …))

(define-type User%
 (Class 
 #:implements Social<%>
 [get-id (-> Natural)]
 [get-email (-> String)]
 [get-name (-> String)]
 …))

(: social-mixin 
 (All (r #:row)
 ((Class #:row-var r
 #:implements Social-Obligations<%>)
 . -> .
 (Class #:row-var r
 #:implements Social<%>)))) 

(define (social-mixin %)
 (class %
 (super-new)
 (define/public (get-tags) 
 …)))

(: user% User%)
(define user%
 (social-mixin
 (class object%
 (super-new)  
 
 (define-from-row 
 (query-row 
 SELECT ,@user-row-sql
 FROM loft.user WHERE id = ,id) 
 [name : String] 
 [email : String] 
 [joined : Timestamp]
 …) 
 
 (define/public (get-name) name) 
 …)))

> (define user (get-user-by-id 42))  
> (define-values (data-port file-name) 
 (send 
 (send user get-last-composition) 
 export)) 
> (process/ports #f data-port #f "play -")

Very nice to work with! 
 

Why does it take 3 minutes to raco make?  
 

Why is it so sluggish to run? 
(about twice as slow on common queries)

#lang typed/racket 

(provide (all-defined-out))  
 
(define-type C% 
 (Class [id : (-> (Listof Byte) (Listof Byte))])) 
 
(: c% C%) 
(define c% 
 (class object% 
 (super-new)  
 (define (id xs) xs))) 
 
(define (test [c : C%]) 
 (time (void (send c id big-byte-list))))

(module* test/typed typed/racket
 (require (submod ".."))
 (test (new c%)))

(module* test/untyped racket
 (require (submod ".."))
 (test (new c%)))

> (require (submod "." test/typed)) 
cpu time: 0 real time: 0 gc time: 0

> (require (submod "." test/untyped)) 
cpu time: 3831 real time: 3829 gc time: 3101

Why?

• Classes and objects that pass the typed/untyped
boundary are wrapped in contracts

• This is necessary for soundness

• Contracts in a complex system of objects are large
and slow (typed methods that accept objects will be
augmented to wrap the arguments in contracts; this
is recursive)

• Solution (for now): No untyped code!

(define-type Media (U (Instance Image%) 
 (Instance Sound%))) 
(define (media->response [media : Media]) 
 : Response 
 (response 
 200 "Good" (current-seconds) 
 (send media get-mime-type) 
 (if (is-a? media sound%) 
 (list 
 (header #"X-Content-Duration" 
 (send media get-duration)))
 empty) 
 (send media get-port))

send: method not understood by object

> is-a? 
- : (-> Any ClassTop Boolean)Reality:

> make-is-a? 
- : (All (A)
 (A . -> .
 (Any . -> . Boolean
 : #:+ (Instance A))))

Desire:

Just using is-a? isn’t sound

Solution (bad): Cast to (Instance Class)!

(if (is-a? media sound%) 
 (list 
 (header …)) 
 empty)

(with-handlers 
 ([exn:fail? (lambda _ empty)]) 
 (list 
 (header #"X-Content-Duration" 
 (send (cast media (Instance Sound%)) 
 get-duration))))

• This wraps media in a contract

• It’s also asking the wrong question:  
 
“Does media act like an instance of type Sound%?”

• What I really want to know: 
 
“Is media an instance of class sound%?”

Solution (less bad): Implement make-is-a?

(require/typed/unsafe
 "is-a-maker.rkt"
 [make-is-a? 
 (All (A)
 (A . -> .
 (Any . -> . Boolean
 : #:+ (Instance A))))])

• Works; no contracts!

• It’s unsound

• Needs typed-racket PR#126

What about the rest?
• No more server state

• WebSocket and HTTP are handled by some nasty  
C++ code (nginx/SCGI for HTTP)

• API requests are delivered to Racket in a high-level
form via redis

• One Racket-level thread per Racket process to
handle requests

• Average request opens no new TCP connections

• 2 unique exceptions / week in production

• 50 requests / process second

Did it matter?

BEFORE:

• 0.3 unique exceptions / week in production

• 200 requests / process second

AFTER:

Future Directions

• Some Racket code doing musical analysis in the
browser with Whalesong (in the works)

• Make debugging memory errors in racket3m easier?

• Memory allocation / GC traffic visualization

• TR bindings for db that fix the sql-null problem
(stretch goal: integrate types with queries?)

Large-scale projects in Racket are fun and good!

We’ve recently changed our name to Outro for trademark
reasons. You can find us out outro.io .

http://outro.io

