Distributed Places

Kevin Tew
University of Utah










Places Example

(require racket/place
racket/place/distributed)
(provide hello-world)

(define (hello-world ch)
(printf/f "hello-world received: ~a\n"
(place-channel-get ch))
(place-channel-put ch "Hello World\n")
(printf/f "hello-world sent: Hello World\n"))

(module+ main
(define p (dynamic-place (quote-module-path "..
"hello-world))
(place-channel-put p "Hello")
(printf/f "main received: ~a\n"
(place-channel-get p))
(place-wait p))




Places Example

(require racket/place
racket/place/distributed)
(provide hello-world)

(define (hello-world ch)
(printf/f "hello-world received: ~a\n"
(place-channel-get ch))
(place-channel-put ch "Hello World\n")
(printf/f "hello-world sent: Hello World\n"))

(module+ main
(define p (dynamic-place (quote-module-path "..
"hello-world))
(place-channel-put p "Hello")
(printf/f "main received: ~a\n"
(place-channel-get p))
(place-wait p))




Places Example

(require racket/place
racket/place/distributed)
(provide hello-world)

(define (hello-world ch)
(printf/f "hello-world received: ~a\n"
(place-channel-get ch))
(place-channel-put ch "Hello World\n")
(printf/f "hello-world sent: Hello World\n"))

(module+ main
(define p (dynamic-place (quote-module-path "..
"hello-world))
(place-channel-put p "Hello")
(printf/f "main received: ~a\n"
(place-channel-get p))
(place-wait p))




Places Example

(require racket/place
racket/place/distributed)
(provide hello-world)

(define (hello-world ch)
(printf/f "hello-world received: ~a\n"
(place-channel-get ch))
(place-channel-put ch "Hello World\n")
(printf/f "hello-world sent: Hello World\n"))

(module+ main
(define p (dynamic-place (quote-module-path "..
"hello-world))
(place-channel-put p "Hello")
(printf/f "main received: ~a\n"
(place-channel-get p))
(place-wait p))













Distributed Places




Pile of

Functions




PileOf

Furictions




PileOf

Furictions







Distributed Places Example

Places

(require racket/place
racket/place/distributed)
(provide hello-world)

(define (hello-world ch)
(printf/f "hello-world received: ~a\n"
(place-channel-get ch))
(place-channel-put ch "Hello World\n")
(printf/f "hello-world sent: Hello World\n"))

(module+ main

(define p (dynamic-place (quote-module-path ".

"hello-world))
(place-channel-put p "Hello")
(printf/f "main received: ~a\n"
(place-channel-get p))
(place-wait p))

)

Distributed Places

(require racket/place
racket/place/distributed)
(provide hello-world)

(define (hello-world ch)
(printf/f "hello-world received: ~a\n"
(place-channel-get ch))
(place-channel-put ch "Hello World\n")
(printf/f "hello-world sent: Hello World\n"))

(module+ main
(define n (create-place-node "host2"

#:listen-port 6344))
#.:at n
(quote-module-path "..")
"hello-world))
(place-channel-put p "Hello")

(printf/f "main received: ~a\n"
(place-channel-get p))
(place-wait p))

(define p (dynamic-place




Distributed Places

AP




create-place-node

(create-place-node
hostname
[#:1listen-port port
:racket-path racket-path
:ssh-bin-path ssh-path
:distributed-launch-path launcher-path
ruse-current-ports use-current-ports])
-» (1s-a?/c remote-node%)
hostname : string?
port : port-no? = DEFAULT-ROUTER-PORT
racket-path : string-path? = (racket-path)
ssh-path : string-path? = (ssh-bin-path)
launcher-path : string-path?
= (path->string distributed-launch-path)
use-current-ports : boolean? = #t




dynamic-place

(dynamic-place

module-path

start-name

[#:at node

#:.named named]) - place?
module-path : (or/c module-path? path?)
start-name : symbol?
node : (or/c #f remote-node%) = #fT
named : (or/c #f string?) = #f




Implementing Distributed Places




Implementing Distributed Places

Spawn Remote Processes
a8 o 0§




Implementing Distributed Places

Spawn Remote Processes
T o
Send Place Messages Across TCP Sockets
a5 = — a5




Implementing Distributed Places

Spawn Remote Processes
0§ a3 23

~Sa

Send Place Messages Across TCP Sockets
a§ = - oF

Integrate with Racket Concurrency Primitives




Higher-level

Distributed Frameworks




RPC Server

Definition - tuple.rkt

(require racket/match
racket/place/define-remote-server)
(define-named-remote-server tuple-server

(define-state h (make-hash))

(define-rpc (set k v)
(hash-set! h k v)
V)

(define-rpc (get k)
(hash-ref h k #f))

(define-cast (hello)
(printf "Hello from define-cast\n")
(flush-output)))

Use

(require racket/place/distributed
racket/place
"tuple.rkt")

(module+ main
(define c (connect-to-named-place remote-node
"tuple-server))
(tuple-server-hello c)
(displayln (tuple-server-set c "user0" 100))
(displayln (tuple-server-get c "userQ0")
(tuple-server-hello)))




MP]

(require racket/place/distributed (module+ main
racket/place/distributed/rmpi) (define args null)
(time
(provide prod-id-place) (rmpi-launch
(rmpi-build-default-config
(define (prod-id-place ch) #:mpi-module (quote-module-path "..")
(define-values (comm args tc) (rmpi-init ch)) #:mpi-func 'prod-id-place
(define sum (rmpi-allreduce comm #:mpi-args args)
*
(+ 1 (rmpi-id comm)))) (list (list "localhost" 6341 'kmeansO 0)
(printf/f "~a - ~a\n" (rmpi-id comm) sum) (list "localhost" 6342 'kmeans1 1)
(sleep 3) (list "localhost" 6343 'kmeans2 2)
(list "localhost" 6344 'kmeans3 3)
(rmpi-finish comm tc)) (list "localhost" 6345 'kmeans4 4)
(list "localhost" 6346 'kmeans5 5)
(list "localhost" 6347 'kmeans6 6)
(list "localhost" 6348 'kmeans7 7)))))




Map Reduce

(define/provide (mapper kvs)
(for/first ([kv kvs])
(match kv
[(cons k v)
(with-input-from-file
v
(lambda ()
(let loop ([result null])
(define 1 (read-1line))
(if (eof-object? 1)
result
(loop (cons (cons 1 1)

result))))))1)))

(define/provide (reducer kvs)
(for/list ([kv kvs])
(match kv
[(cons k v)
(cons k (list (for/fold ([sum 0])
([x v])
(+ sum x))))1)))

(define/provide (outputer kvs)
(displayln
(for/fold ([sum 0]) ([kv kvs])
(printf "~a - ~a\n" (car kv) (cadr kv))
(+ sum (cadr kv)))))

(define config (list (list "host2" 6430)
(list "host3" 6430)))

(define tasks (list (list (cons O "/tmp/w0"))
(list (cons 1 "/tmp/wi1™))

cee))

(define workers (make-map-reduce-workers config))

(map-reduce workers config tasks
(list (quote-module-path "..") 'mapper)
(list (quote-module-path "..") 'reducer)
#:outputer (list (quote-module-path "..")
'outputer))




Conclusions

« Language extension enables concise

Implementation and use
« Reuses dynamic-place syntax and place channels
« Foundation for building higher-level parallel and

distributed frameworks
« Roadmap for dynamic language implementers to

follow




