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What is a student to do 
when s/he reaches the end of HtDP?
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What is a student to do 
when s/he reaches the end of HtDP?

What is a student to do 
who doesn’t see HtDP in his/her first year?
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Mimi Lin
Nicole Nussbaum
Spencer Florence
Pranav Gandhi

David van Horn

by freshmen,
for freshmen
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We need your help. 
When we launch, 

please spread the word.
Watch users@racket-lang.org

for announcements.
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signatures
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contracts
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design recipes
design guidelines

topics, order of (mostly) 

algorithmic trade-offs for design
animation, games (context)

modularity plus ADTs
real-world data (context)

vectors and iterators
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HtDP/2e
order of topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators
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HtDP/2e
order of topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

missing:
- mutable variables
- mutable structures
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HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

#lang 2htdp/asl

(require 2htdp/universe)
(require “common-to-client-and-server.rkt”)

(define (my-game-server state0)
  (universe state0 [on-new ...] ...))
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HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

#lang 2htdp/asl

(require 2htdp/universe)
(require “common-to-client-and-server.rkt”)

(define (my-game-server state0)
  (universe state0 [on-new ...] ...))

#lang 2htdp/asl

(provide create-message parse-message)

(define (create-message x y z) ...)
(define (parse-message m) ...)

common-to-client-and-server
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HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and data abstraction
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HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and data abstraction
   functional data representations
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examples:
+ finite sets
+ dictionary/hashes
+ infinite sets 
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HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and data abstraction
   functional data representations
loops and iterators

examples:
+ finite sets
+ dictionary/hashes
+ infinite sets 
#lang 2htdp/isl
;; Set = [Any -> Boolean]

;; Set Set -> Set 

(check-expect 
  (element-of (union odd? even?) 
              (random 100000)) 
   true)

(define (union s t)
  (lambda (x)
    (or (s x) (t x))))
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HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

#lang 2htdp/asl

;; [Vectorof Number] -> Number 

(check-within (norm (vector 1 1 1)) (sqrt 3)
              .0001)

(define (norm v)
  (sqrt
   (for/fold ((sum 0)) ((x v))
     (+ sum (sqr x)))))
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HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

#lang 2htdp/asl

;; [Vectorof Number] -> Number 

(check-within (norm (vector 1 1 1)) (sqrt 3)
              .0001)

(define (norm v)
  (sqrt
   (for/fold ((sum 0)) ((x v))
     (+ sum (sqr x)))))

#lang 2htdp/asl

;; Number [Vectorof Number] -> [Vectorof Number]

(check-expect (scalar* 3 (vector 0 -4 2)) 
              (vector 0 -12 6))

(define (scalar* a v)
  (for/vector ((x v))
    (* a x)))
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HtDP/2e
algorithmic trade-off

...
functional abstraction
intermezzo: O(...), running time, vectors
complex recursive data:  
   lookup in lists vs BSTs
   measurements 
generative recursion: 
   insertion sort vs quicksort,
   graph traversals based on lists, vectors, links
design with accumulators: 
   more data accumulators (invariants)
   tree structures w/ accumulators 
...
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HtDP/2e
context: animation & 

games & real data

Input/Output:

interactive I/O batch (file, net) I/O
how to build  a complete application
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HtDP/2e
context: real data

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

#lang 2htdp/bsl

(require 2htdp/batch-io)
(require 2htdp/itunes)

;; String -> [Listof iTuneRecords]
(define (retriev-database file-name)
   (list->iTune-Record
     (read-file-as-list file-name)))

... process titles, singers, ... 
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HtDP/2e
context: real data

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

#lang 2htdp/isl

(require 2htdp/batch-io)

;; String -> [Listof iTuneRecords]
(define (retriev-database file-name)
   (write-as-csv-file
     (add-row-to-spread-sheet
       (read-file-as-csv file-name
                         process-cell)))

;; Cell -> ...
(define (process-cell c)
   ...)
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HtDP/2e
context: real data

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

#lang 2htdp/isl

(require 2htdp/universe)
(require 2htdp/batch-io)
(require “google-yahoo-credentials.rkt”)

(define (main s)
  (big-bang (retrieve-maps
              (retrieve-coordinates s))
            [to-draw draw-first-map]
            [on-key rotate-maps]))

;; Address -> Coordinates 
(define (retrieve-coordinates address)
   (read-url YAHOO-GEO-SERVICE ...))

;; Coordinates -> [Listof Image]
(define (retrieve-maps coordinates)
   (read-url GOOGLE-MAPS ...))
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HtDP/2e
context: beyond big-bang 

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

#lang 2htdp/isl

(require 2htdp/universe)
(require 2htdp/image)

;; Nat -> OrcWorld 
(define (launch-orc-battle s)
  (big-bang (create-orcs-and-fighter s)
            [to-draw render-orc-game]
            [on-key fight-orcs]
            [stop-when win-or-lose?]
            [on-tick counting-down]))

...
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UniverseServer

HtDP/2e
context: beyond big-bang 

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion 
design with accumulators 
modules and abstract data
   functional data representations
loops and iterators

World

World

World

World

World

Saturday, July 23, 2011



stop

Saturday, July 23, 2011



HtDP/2e is a large undertaking. 
It will still take a while, 

but it is on the Web 
and feedback is 

desired. 
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