
What's Wrong with How to
Design Programs; What's New
in How to Design Programs 2e

Matthias Felleisen

Saturday, July 23, 2011

Content Context

Saturday, July 23, 2011

Content

Academic
Context

Outside
Context

Saturday, July 23, 2011

Content

Academic
Context

Outside
Context

Saturday, July 23, 2011

Outside
Context

What is a student to do
when s/he reaches the end of HtDP?

Saturday, July 23, 2011

Outside
Context

What is a student to do
when s/he reaches the end of HtDP?

What is a student to do
who doesn’t see HtDP in his/her first year?

Saturday, July 23, 2011

Outside
Context

Lisp
Fun

Games
Learning

Programming
Stories with Comics

Web Sites, Songs, and Videos

Saturday, July 23, 2011

video

Saturday, July 23, 2011

Fun
Games

Learning
Programming

Stories with Comics
Web Sites, Songs, and Videos

ROAR:
Realm of
Racket

Lisp

Saturday, July 23, 2011

Fun
Games

Learning
Programming

Stories with Comics
Web Sites, Songs, and Videos

ROAR:
Realm of
Racket

Lisp

Saturday, July 23, 2011

Fun
Games

Learning
Programming

Stories with Comics
Web Sites, Songs, and Videos

ROAR:
Realm of
Racket

Saturday, July 23, 2011

Fun
Games

Learning
Programming

Stories with Comics
Web Sites, Songs, and Videos

ROAR:
Realm of
Racket

Racket

Saturday, July 23, 2011

Inofficial
Launch by freshmen,

for freshmen

Saturday, July 23, 2011

Inofficial
Launch

Mimi Lin
Nicole Nussbaum
Spencer Florence
Pranav Gandhi

David van Horn

by freshmen,
for freshmen

Saturday, July 23, 2011

We need your help.
When we launch,

please spread the word.
Watch users@racket-lang.org

for announcements.

Saturday, July 23, 2011

mailto:users@racket-lang.org
mailto:users@racket-lang.org

Content

Academic
Context

Outside
Context

Saturday, July 23, 2011

Academic
Context

How to Design Programs
How to Design Components

How to Design Systems

How to Prove Programs } Racket

Saturday, July 23, 2011

Academic
Context

How to Design Programs
How to Design Components

How to Design Systems

How to Prove Programs } Racket

Sam Tobin-Hochstadt
David van Horn

Saturday, July 23, 2011

Academic
Context

How to Design Programs
How to Design Components

How to Design Systems

How to Prove Programs } Racket

Carl Eastlund
Daniel Friedman

Sam Tobin-Hochstadt
David van Horn

Saturday, July 23, 2011

Academic
Context

transition to ‘regular’ programming:
arrays

for loops
types

Saturday, July 23, 2011

Academic
Context

transition to ‘regular’ programming:
arrays

for loops
types

HtDP/2e

Saturday, July 23, 2011

Academic
Context

transition to ‘regular’ programming:
arrays

for loops
types

HtDP/2e

HtDP/3e:
signatures

types
contracts

Saturday, July 23, 2011

Content:
HtDP/2e

Context

Saturday, July 23, 2011

Content
HtDP/2e

design recipes
design guidelines

topics, order of (mostly)

Saturday, July 23, 2011

Content
HtDP/2e

design recipes
design guidelines

topics, order of (mostly)

algorithmic trade-offs for design
animation, games (context)

modularity plus ADTs
real-world data (context)

vectors and iterators

Saturday, July 23, 2011

Saturday, July 23, 2011

HtDP/2e
order of topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

Saturday, July 23, 2011

HtDP/2e
order of topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

missing:
- mutable variables
- mutable structures

Saturday, July 23, 2011

HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

#lang 2htdp/asl

(require 2htdp/universe)
(require “common-to-client-and-server.rkt”)

(define (my-game-server state0)
 (universe state0 [on-new ...] ...))

Saturday, July 23, 2011

HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

#lang 2htdp/asl

(require 2htdp/universe)
(require “common-to-client-and-server.rkt”)

(define (my-game-server state0)
 (universe state0 [on-new ...] ...))

#lang 2htdp/asl

(provide create-message parse-message)

(define (create-message x y z) ...)
(define (parse-message m) ...)

common-to-client-and-server

Saturday, July 23, 2011

HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and data abstraction
 functional data representations
loops and iterators

Saturday, July 23, 2011

HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and data abstraction
 functional data representations
loops and iterators

examples:
+ finite sets
+ dictionary/hashes
+ infinite sets

Saturday, July 23, 2011

HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and data abstraction
 functional data representations
loops and iterators

examples:
+ finite sets
+ dictionary/hashes
+ infinite sets
#lang 2htdp/isl
;; Set = [Any -> Boolean]

;; Set Set -> Set

(check-expect
 (element-of (union odd? even?)
 (random 100000))
 true)

(define (union s t)
 (lambda (x)
 (or (s x) (t x))))

Saturday, July 23, 2011

HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

#lang 2htdp/asl

;; [Vectorof Number] -> Number

(check-within (norm (vector 1 1 1)) (sqrt 3)
 .0001)

(define (norm v)
 (sqrt
 (for/fold ((sum 0)) ((x v))
 (+ sum (sqr x)))))

Saturday, July 23, 2011

HtDP/2e
[order of] topics

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

#lang 2htdp/asl

;; [Vectorof Number] -> Number

(check-within (norm (vector 1 1 1)) (sqrt 3)
 .0001)

(define (norm v)
 (sqrt
 (for/fold ((sum 0)) ((x v))
 (+ sum (sqr x)))))

#lang 2htdp/asl

;; Number [Vectorof Number] -> [Vectorof Number]

(check-expect (scalar* 3 (vector 0 -4 2))
 (vector 0 -12 6))

(define (scalar* a v)
 (for/vector ((x v))
 (* a x)))

Saturday, July 23, 2011

Saturday, July 23, 2011

HtDP/2e
algorithmic trade-off

...
functional abstraction
intermezzo: O(...), running time, vectors
complex recursive data:
 lookup in lists vs BSTs
 measurements
generative recursion:
 insertion sort vs quicksort,
 graph traversals based on lists, vectors, links
design with accumulators:
 more data accumulators (invariants)
 tree structures w/ accumulators
...

Saturday, July 23, 2011

HtDP/2e
context: animation &

games & real data

Saturday, July 23, 2011

HtDP/2e
context: animation &

games & real data

Saturday, July 23, 2011

HtDP/2e
context: animation &

games & real data

Input/Output:

Saturday, July 23, 2011

HtDP/2e
context: animation &

games & real data

Input/Output:

interactive I/O

Saturday, July 23, 2011

HtDP/2e
context: animation &

games & real data

Input/Output:

interactive I/O batch (file, net) I/O

Saturday, July 23, 2011

HtDP/2e
context: animation &

games & real data

Input/Output:

interactive I/O batch (file, net) I/O
how to build a complete application

Saturday, July 23, 2011

HtDP/2e
context: real data

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

#lang 2htdp/bsl

(require 2htdp/batch-io)
(require 2htdp/itunes)

;; String -> [Listof iTuneRecords]
(define (retriev-database file-name)
 (list->iTune-Record
 (read-file-as-list file-name)))

... process titles, singers, ...

Saturday, July 23, 2011

HtDP/2e
context: real data

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

#lang 2htdp/isl

(require 2htdp/batch-io)

;; String -> [Listof iTuneRecords]
(define (retriev-database file-name)
 (write-as-csv-file
 (add-row-to-spread-sheet
 (read-file-as-csv file-name
 process-cell)))

;; Cell -> ...
(define (process-cell c)
 ...)

Saturday, July 23, 2011

HtDP/2e
context: real data

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

#lang 2htdp/isl

(require 2htdp/universe)
(require 2htdp/batch-io)
(require “google-yahoo-credentials.rkt”)

(define (main s)
 (big-bang (retrieve-maps
 (retrieve-coordinates s))
 [to-draw draw-first-map]
 [on-key rotate-maps]))

;; Address -> Coordinates
(define (retrieve-coordinates address)
 (read-url YAHOO-GEO-SERVICE ...))

;; Coordinates -> [Listof Image]
(define (retrieve-maps coordinates)
 (read-url GOOGLE-MAPS ...))

Saturday, July 23, 2011

HtDP/2e
context: beyond big-bang

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

#lang 2htdp/isl

(require 2htdp/universe)
(require 2htdp/image)

;; Nat -> OrcWorld
(define (launch-orc-battle s)
 (big-bang (create-orcs-and-fighter s)
 [to-draw render-orc-game]
 [on-key fight-orcs]
 [stop-when win-or-lose?]
 [on-tick counting-down]))

...

Saturday, July 23, 2011

UniverseServer

HtDP/2e
context: beyond big-bang

finite data
simple recursive data
functional abstraction
complex recursive data
generative recursion
design with accumulators
modules and abstract data
 functional data representations
loops and iterators

World

World

World

World

World

Saturday, July 23, 2011

stop

Saturday, July 23, 2011

HtDP/2e is a large undertaking.
It will still take a while,

but it is on the Web
and feedback is

desired.

Saturday, July 23, 2011

