What's Wrong with How to
Design Programs; What's New
In How to Design Programs 2e

Matthias Felleisen

HOW TO DESIGN PROGRAMS

An Infroduction to Programming and Computing

Content Context

Matthias Robert Bruce Martthew Shriram
Felleisen Findler Flatt Krishnamurthi

Saturday, July 23, 2011

Outside
Context

HOW TO DESIGN PROGRAMS

An Introduction to Progromming and Computing

Content

Academic
Context

Saturday, July 23, 2011

Outside
Context

HOW TO DESIGN PROGRAMS

An Introduction to Progromming and Computing

Content

Matthix Robert Bruce Matthew Shriram
Felleisen Findler Flatt Krishnamurthi

Academic
Context

Saturday, July 23, 2011

Outside
Context

What is a student to do
when s/ he reaches the end of HtDP?

Outside
Context

What is a student to do
when s/ he reaches the end of HtDP?

What is a student to do
who doesn’t see HtDP in his/her first year?

Outside
Context

Lisp
Fun
Games
Learning
Programming
Stories with Comics
Web Sites, Songs, and Video

Saturday, July 23, 2011

video

Saturday, July 23, 2011

ROAR:
Realm of
Racket

Realm of Racket

Rose DeMaio
Spencer Florence
Feng-Yun Mimi Lin
Nicole Nussbaum
Eric Peterson
Ryan Plessner

Forrest Bice

Eric Chin

Pranav Gandhi
James Grammatikos
Cole Levi

Scott Lindeman
Jack Noble

Alex Schwartz
Brendan Wilson

David Van Horn
Matthias Felleisen

[— T

Lisp
Fun
Games
Learning
Programming
Stories with Comics
Web Sites, Songs, and Video

Saturday, July 23, 2011

ROAR:
Realm of
Racket

Realm of Racket

Rose DeMaio
Spencer Florence
Feng-Yun Mimi Lin
Nicole Nussbaum
Eric Peterson
Ryan Plessner

Forrest Bice

Eric Chin

Pranav Gandhi
James Grammatikos
Cole Levi

Scott Lindeman
Jack Noble

Alex Schwartz
Brendan Wilson

David Van Horn
Matthias Felleisen

"

i
Fun
Games
Learning
Programming

Stories with Comics
Web Sites, Songs, and Video

Saturday, July 23, 2011

ROAR:
Realm of
Racket

Realm of Racket

Rose DeMaio
Spencer Florence
Feng-Yun Mimi Lin
Nicole Nussbaum
Eric Peterson
Ryan Plessner

Forrest Bice

Eric Chin

Pranav Gandhi
James Grammatikos
Cole Levi

Scott Lindeman
Jack Noble

Alex Schwartz
Brendan Wilson

David Van Horn
Matthias Felleisen

[— T

Fun
Games
Learning
Programming
Stories with Comics
Web Sites, Songs, and Video

Saturday, July 23, 2011

ROAR:
Realm of
Racket

Realm of Racket

Rose DeMaio
Spencer Florence
Feng-Yun Mimi Lin
Nicole Nussbaum
Eric Peterson
Ryan Plessner

Forrest Bice

Eric Chin

Pranav Gandhi
James Grammatikos
Cole Levi

Scott Lindeman
Jack Noble

Alex Schwartz
Brendan Wilson

David Van Horn
Matthias Felleisen

"

Racket

Fun
Games
Learning
Programming
Stories with Comics
Web Sites, Songs, and Video

Saturday, July 23, 2011

Inofficial

[Launch

THIS IS CHAD
Chad looks sad

Maybe that’s because
he feels lost.

After his first year in
college, he still feels
unsure about his
future.

He has not declared a
major yet and didn't
find any of his first year
courses exciting.

His good friends, Matt
and Dave, suggested
that he should check
out programming, but
he couldn't understand
why.

So Chad is going to do
some research. How
exciting can
programming really
be?

by freshmen,
for freshmen

Saturday, July 23, 2011

Inofficial

[Launch

THIS IS CHAD
Chad looks sad

Maybe that’s because
he feels lost.

After his first year in
college, he still feels
unsure about his
future.

He has not declared a
major yet and didn't
find any of his first year
courses exciting.

His good friends, Matt
and Dave, suggested
that he should check
out programming, but
he couldn't understand
why.

So Chad is going to do
some research. How
exciting can
programming really
be?

by freshmen,
for freshmen

David van Horn

Mimi Lin
Nicole Nussbaum
Spencer Florence

Pranav Gandhi

Saturday, July 23, 2011

We need your help.
When we launch,
please spread the word.
Watch users@racket-lang.org
for announcements.

Saturday, July 23, 2011

mailto:users@racket-lang.org
mailto:users@racket-lang.org

Outside
Context

HOW TO DESIGN PROGRAMS

An Introduction to Progromming and Computing

Content

Matthix Robert Bruce Matthew Shriram
Felleisen Findler Flatt Krishnamurthi

Academic
Context

Saturday, July 23, 2011

Academic
Context

How to Design Programs
e How to Design Components

How to Design Systems RaCket

How to Prove Programs

Saturday, July 23, 2011

Academic
Context

Sam Tobin-Hochstadt
David van Horn

How to ign Programs
e L) [HOW to Design Components

How to Design Systems RaCket

How to Prove Programs

Saturday, July 23, 2011

Academic
Context

Sam Tobin-Hochstadt
David van Horn

How to ign Programs
HOW TO DESIGN PROGRAMS [HOW tO DeSign CompOnentS

How to Design Systems RaCket

How to Prove Programs

Carl Eastlund
Daniel Friedman

Saturday, July 23, 2011

Academic
Context

transition to ‘regular” programming;:

HOW TO DESIGN PROGRAMS

arrays
for loops

types

Saturday, July 23, 2011

Academic
Context

HtDP/2e)

transition to ‘regulay” programming;:

arrays
for loops

types

HOW TO DESIGN PROGRAMS

Saturday, July 23, 2011

Academic
Context

HtDP/2e)

transition to ‘regulay” programming;:

arrays
for loops

types

HOW TO DESIGN PROGRAMS

Saturday, July 23, 2011

HOW TO DESIGN PROGRAMS

‘)
O I l t‘ I I t ° An Introduction to Progromming and Computing
H tD P / 2 e Matthias Robert Broce Shriram

Felleisen Findler Krishoamurthi

Context

Saturday, July 23, 2011

Content
HtDP /2e

HOW TO DESIGN PROGRAMS

design recipes
design guidelines
topics, order of (mostly)

Saturday, July 23, 2011

Content
HtDP /2e

HOW TO DESIGN PROGRAMS

design recipes algorithmic trade-offs for design
design guidelines animation, games (context)
topics, order of (mostly) modularity plus ADTs

real-world data (context)
vectors and iterators

Saturday, July 23, 2011

Saturday, July 23, 2011

HtDP/2e
order of topics

finite data

simple recursive data

functional abstraction

complex recursive data

generative recursion

design with accumulators

modules and abstract data
functional data representations

loops and iterators

Saturday, July 23, 2011

HtDP/2e
order of topics

finite data missing:
simple recursive data - mutable variables
functional abstraction - mutable structures

complex recursive data

generative recursion

design with accumulators

modules and abstract data
functional data representations

loops and iterators

Saturday, July 23, 2011

HtDP/2e
lorder of] topics

finite data

simple recursive data

functional abstraction

complex recursive data

generative recursion

design with accumulators

modules and abstract data
functional data representations

loops and iterators

#lang Z2htdp/asl

(require Zhtdp/universe)

(require “common-to-client-and-server.rkt”)

(define (my-game-server state)

(universe state® [on-new ..

e)

Saturday, July 23, 2011

HtDP/2e
lorder of] topics

finite data
simple recursive data #lang 2htdp/asl
functional abstraction e e i
Complex recursive data (require “common-to-client-and-server.rkt”)
generative recursion (define (my-gamdl-server state®)
design With accumulators (universe state® [on-new ...] ...))
modules and abstract data common-to-client-and-server
functional data representations| |#tang 2htdp/asl
lOOpS and iterators @pr'ovide create-message parse—message)
(define (create-message xy z) ...)
(define (parse-message m) ...)

Saturday, July 23, 2011

HtDP/2e
lorder of] topics

finite data

simple recursive data

functional abstraction

complex recursive data

generative recursion

design with accumulators

modules and data abstraction
functional data representations

loops and iterators

Saturday, July 23, 2011

HtDP/2e
lorder of] topics

examples:
finite data + finite sets
simple recursive data + dictionary / hashes
functional abstraction + infinite sets

complex recursive data

generative recursion

design with accumulators

modules and data abstraction
functional data representations

loops and iterators

Saturday, July 23, 2011

HtDP/2e
lorder of] topics

finite data

simple recursive data

functional abstraction

complex recursive data

generative recursion

design with accumulators

modules and data abstraction
functional data representations

loops and iterators

examples:

+ finite sets

+ dictionary /hashes
+ infinite sets

#lang Z2htdp/1isl
;3 Set = [Any -> Boolean]

;5 Set Set -> Set

(check-expect
(element-of (union odd? even?)
(random 100000))
true)

(define (union s t)
(lambda (x)
Cor (s x) (t x))))

Saturday, July 23, 2011

HtDP/2e
lorder of] topics

#lang Z2htdp/asl
;5 [Vectorof Number] -> Number
ﬁnite data (check-within (norm (vector 1 1 1)) (sgrt 3)
simple recursive data Ay
functional abstraction (define (norm v)
. (sgrt
complex recursive data [(For IR
generative recursion (+ sum Csar x)))))

design with accumulators
modules and abstract data

functional data representations
loops and iterators

Saturday, July 23, 2011

HtDP/2e
lorder of] topics

finite data

simple recursive data

functional abstraction

complex recursive data

generative recursion

design with accumulators

modules and abstract data
functional data representations

loops and iterators

#lang Z2htdp/asl
;5 [Vectorof Number] -> Number

(check-within (norm (vector 1 1 1)) (sgrt 3)
.0001)

(define (norm v)
(sgrt

(Ffor/Fold (Csum 0)) ((x V)

(+ sum (sqr x)))))

#lang Z2htdp/asl
;5 Number [Vectorof Number] -> [Vectorof Number]

(check-expect (scalar* 3 (vector 0 -4 2))
(vector 0 -12 6))

(define (scalar* a v)

(for/vector ((x v))
Cla X))

Saturday, July 23, 2011

Saturday, July 23, 2011

HtDP/2e
algorithmic trade-off

functional abstraction
intermezzo: O(...), running time, vectors
complex recursive data:
lookup in lists vs BSTs
measurements
generative recursion:
insertion sort vs quicksort,
graph traversals based on lists, vectors, links
design with accumulators:
more data accumulators (invariants)
tree structures w/ accumulators

Saturday, July 23, 2011

HtDP/2e

context: animation &
games & real data

Saturday, July 23, 2011

Input/Output:

Saturday, July 23, 2011

Input/Output:

interactive I/O

Saturday, July 23, 2011

~animairerr &
X I'€dl Jores
Input/Output:

interactive I/O

batch (file, net) I/O

Saturday, July 23, 2011

AN1IMalierT |
X I'€dl Jores
Input/Output:

how to build a complete application

interactive I/O

batch (file, net) I/O

Saturday, July 23, 2011

HtDP /2e
context: real data

finite data
simple recursive data AlangcutepAbat
functional abstraction ((require 2htdp/batch-io)
complex recursive data Crequike EdRATEUTE o)
generative recursion . s String -> [Listof iTuneRecords]
5 s (define (retriev-database file-name)
design with accumulators e s R
modules and abstract data (read-file-as-1list file-name)))
functional data representations| |... process titles, singers,

loops and iterators

Saturday, July 23, 2011

HtDP /2e
context: real data

finite data

simple recursive data

functional abstraction

complex recursive data

generative recursion

design with accumulators

modules and abstract data
functional data representations

loops and iterators

#lang Z2htdp/1isl
(require Zhtdp/batch-10)

;5 String -> [Listof iTuneRecords]
(define (retriev-database file-name)
(write-as-csv-file
(add-row-to-spread-sheet
(read-file-as-csv file-name
[process-cell)))

saCelflaivssgs
(define (process-cell c)

)

Saturday, July 23, 2011

HtDP /2e
context: real data

finite data

simple recursive data

functional abstraction

complex recursive data

generative recursion

design with accumulators

modules and abstract data
functional data representations

loops and iterators

#lang Zhtdp/1isl

(require 2htdp/universe)
(require 2htdp/batch-10)
(require “google-yahoo-credentials.rkt”)

(define (main s)
(big-bang (retrieve-maps
(retrieve-coordinates s))
[to-draw draw-first-map]
[on-key rotate-maps]))

;3 Address -> Coordinates

(define (retrieve-coordinates address)
(read-url YAHOO-GEO-SERVICE ...))

,; Coordinates -> [Listof Image]

(define (retrieve-maps coordinates)
(read-url GOOGLE-MAPS ...))

Saturday, July 23, 2011

HtDP/2e

context: beyond big-bang

finite data

simple recursive data

functional abstraction

complex recursive data

generative recursion

design with accumulators

modules and abstract data
functional data representations

loops and iterators

#lang Zhtdp/1isl

(require Zhtdp/universe)
(require Zhtdp/image)

;3 Nat -> OrcWorld
(define (launch-orc-battle s)
(big-bang (create-orcs-and-fighter s)
[to-draw render-orc-game]
[on-key fight-orcs]
[stop-when win-or-lose?]
[on-tick counting-down]))

Saturday, July 23, 2011

HtDP/2e
context: beyond big-bang

finite data (|)
simple recursive data World 6/\/01‘ IOD

functional abstraction
complex recursive data
[World

generative recursion

. : UmverseServe
design with accumulators
modules and abstract data
. . (World
functional data representations 01«1@

loops and iterators

Saturday, July 23, 2011

stop

Saturday, July 23, 2011

¥ How to Design Programs, next —
Second Edition . T
1 Prologue:How to Program
2 Fixed-Size Data - -
3 Intermezzo:BSL How to Design Programs, Second Edition
4 Arbitrarily Large Data
5 Intermezzo:Signatures

6 Abshusthen Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi
7 Intermezzo:Time and Space
8 Intertwined Data Bad programming is easy. /diots can learn it in 2/ days, even if they are Dummies.

9 Intermezzo:Evaluators

10 Generative Recursion : : . : . !
11 Intermezzo:Vectors Good programming requires thought, but everyone can do it and everyone can experience the satisfaction

12 Acssmmlstors that comes with it. The price is worth paying for the sheer joy of the discovery process, the elegance of
13 Epilogue the result, and the commercial benefits of a systematic program design process.

HtDrPglaZ@r 1s-a-large-undertaking......

programs systematically. We assume prerequisites: arithmetic, a tiny bit of mi school algebra,

the willi® to thi ghgssuey We promise that thyg traeags will pay off not just for future
[t will still take.a-while;-
We ateful jo Brynstein, our editor ag MIT 0 ggve us permission to develop this second
swput-it-is-on'the We

11 6:42:00pm

Sunay July 17th, 20 $
Note: this dcan dle f£ hﬂ&:k \.\L&d on a frequent basis. The stable version

is released in conjunction with the PLT software (every odd month) and is thus more suitable for teaching

than this draft. dESil‘ed.

Acknowledgments: We thank Rodolfo Carvalho, John Clements, Christopher Felleisen, Sebastian
Felleisen, Ryan Golbeck, Scott Greene, Kyle Gillette, Nadeem Abdul Hamind Jordan Johnson, Blake
Johnson, Gregor Kiczales, Jackson Lawler, Jay McCarthy, Wade McReynolds, Scott Newson, Paul
Ojanen, Prof. Robert Ordéiiez, Luis Sanjuédn, Willi Schiegel, Nick Shelley, Joe Snikeris, Vincent St.
Amour, Marc Smith, Yuwang Yin,, and David van Horn. for comments on previous drafts of this second
edition.

Differences: This second edition of “How to Design Programs” continues to present an introduction to
systematic program design and problem solving. Here are some important differences:

1. The recipes are applied in two different, typical settings: interactive graphical programs and so-
called “batch” programs. The former mode of interaction is typical for games, the latter for data

wilw)

‘£ T

Saturday, July 23, 2011

