
RacketCon 2017 talk

1 / 25



Proust:
A Nano Proof Assistant

Prabhakar Ragde
University of Waterloo

2 / 25



Marcel Proust

3 / 25



Proust:

A series of small Racket
programs to be used as
proof assistants.

4 / 25



Eventual application:

Teaching a required
sophomore course in
logic and computation.

5 / 25



Proust does not use:

Macros, modules,
#lang DSLs, contracts,
continuations, futures...

6 / 25



Proust does use:

S-exprs, structs,
match, format.

7 / 25



Racket shows that
“difficult” ideas
can be easier to understand
than “simple” ones.

8 / 25



Conventional approach:

Propositional logic
Predicate logic
Equality, mathematical objects
Computation

9 / 25



Student complaints:

Inconsistent content.
Confining.
Boring.
Irrelevant.
Impractical.

10 / 25



A conventional proof:

A,A Ñ B $ A Ñ B
pAssq

A,A Ñ B $ A
pAssq

A,A Ñ B $ B
pÑEq

A $ pA Ñ Bq Ñ B
pÑIq

$ A Ñ pA Ñ Bq Ñ B
pÑIq

11 / 25



Proust approach:

Propositions as types.
Proofs as programs.

12 / 25



A proof of T Ñ W is a function
that consumes a proof of T and
produces a proof of W .

13 / 25



A proof of A Ñ pA Ñ Bq Ñ B
is λx . λf . f x .

14 / 25



Proust:

parser, pretty-printer,
type checking/synthesis
(bidirectional type inference)
syntax-driven
refinement in REPL

15 / 25



Other logical connectives yield
natural programming constructs.

We work out rules in lecture,
students implement them in
Proust, then use it for proofs.

16 / 25



Things get more complicated
with predicate logic.

17 / 25



Conventional predicate logic is
first-order (quantification over
unspecified universe).

Proust uses higher-order logic
(domain of quantification
specified).

18 / 25



A proof of @pX : T q Ñ W is a
function that consumes an object
x of type T and produces a proof
of W rX ÞÑ xs.

(Dependent types.)

19 / 25



Previously:

20 / 25



Now:

21 / 25



Proust must implement:

Proper substitution
Renaming, equivalence
Reduction (computation)

22 / 25



Proofs continue to be more intuitive
and shorter than conventional ones.

It’s also easy to add datatypes.

Polymorphic eliminators give both
structural induction and structural
recursion.

23 / 25



We move to Coq for the last part of
the course.

Proust demystifies Coq!

Students see Coq as compelling
and potentially useful.

24 / 25



Summary:

Small simple Racket programs help
in effectively teaching logic and
computation, using the ideas of
proofs as programs and dependent
types.

25 / 25


