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How can I recognize if it is safe?
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Principle of Least Privilege

“Every program ... should operate using
the least amount of privilege necessary
to complete the job. „

—Jerome Saltzer, CACM
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Scripting with Least Privilege
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Capability-based security

A capability is an unforgeable token of authority

 only accesses system resources through
operations on capabilities

14



A Secure Shell Script

copy.cap

#lang shill/cap

provide { copy : any/c };

copy = fun(from_dir,to_dir) {
  for entry in contents(from_dir) do {

current = lookup(from_dir,entry);
    if file?(current) then {
      new = create-file(to_dir,entry);
      write(new,read(current))
    }
  }
}
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A Secure Shell Script

copy.cap

#lang shill/cap

provide { copy : any/c };

copy = fun(from_dir,to_dir) {
  for entry in contents(from_dir) do {

current = lookup(from_dir,entry);
    if file?(current) then {
      new = create-file(to_dir,entry);
      write(new,read(current))
    }
  }
}

Capability safety: scripts have no capabilities by default
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Fine-grained security with contracts

copy.cap

#lang shill/cap

provide { copy : {
  from : dir/c(+contents, +lookup with { +read }),
  to   : dir/c(+create-file with { +write }) }
  -> void };

require shill/io;

copy = fun(from_dir,to_dir) {
  for entry in contents(from_dir) do {
    current = lookup(from_dir,entry);
    if file?(current) then {
      fwrite(current,"evil");
      new = create-file(to_dir,entry);
      write(new,read(current))
    }
  }
}

Contracts describe exactly how a script will use its capabilities
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copy.cap
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Programmable sandboxes

cat.cap

#lang shill/cap

provide { cat : {
  cat     : file/c(+exec,+read,+stat),
  file    : file/c(+path,+read),
  lookup  : listof(dir/c(+lookup,+stat)),
  libs    : listof(file/c(+exec,+read,+stat)),
  ro      : listof(file/c(+read,+stat)),
  out     : writeable/c }
  -> integer? };

require shill/contracts;

val cat = fun(cat,file,lookups,libs,ro,out) {
  exec(cat,["cat",file],stdout = out,stderr = out,
       extra = list-append(lookups,libs,ro));
}
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Under the hood

Black box capability-based sandboxing for executables

+ a few new capability-safe system calls

#lang shill/cap:

Capability-safe safe subset of racket/base

+ a set!-transformer to control mutation

+ a require-transformer to only import   code

+ a capability-based filesystem library using ffi/unsafe

+ capability contracts using racket/contract

+ a custom reader
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What’s next

Developing commercial version of Shill

Porting to Linux

Plug-in framework for new kinds of capabilities
(processes, databases, ...)
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http://shill-lang.org
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