Ashill

Scripting with Least Privilege
or: Contracts for Security

Scott Moore
(sixth RacketCon)

o ?]

npmie
J
Q

Fancy Install (Unix)

There's a pretty robust install script at https://www.npmijs.org/install.sh.

Here's an example using curl:

curl -L https://npmjs.org/install.sh | sh

File Edit View Search Terminal Help

cd "$TMP" \
&& curl -SsL "gurl" \
| $tar -xzf - \
&& cd "FTMP" /* \
&& (ver=""gnode" bin/read-package-json.js package.json version’
1snpmlO=0
if [¢ret -eq 0 1; then
if [-d node_modules]; then
if "$node" node_modules/semver/bin/semver -v "$ver" -r "1"
then

1snpmlo=1
fi
k‘l se
if "$node" bin/semver -v "$ver" -r ">=1.0"; then
1snpmlO=1

ret=0
if [$1snpmlo -eq 1] && [-f "scripts/clean-old.sh" 1; then
if ["xgskipclean" = "x" 1; then
(exit 0)
L‘l se
clean=no

fi
if ["x$clean" = "xno"] \

|| ["x$clean" = "xn" 1; then
echo "Skipping 0.x cruft clean" >&2
ret=0
elif ["xgclean" = "xy" 1 || ["x$clean" = "xyes" 1; then
NODE="g$node" /bin/bash "scripts/clean-old.sh" "-y"

ret=%$7
else
NODE="g$node" /bin/bash "scripts/clean-old.sh" </dev/tty
ret=$7
fi
fi

if [$ret -ne 0]; then
echo "Aborted 0.x cleanup. Exiting." >&2
exit $ret
fi) \
& (if ["xgconfigures" = "x" 1; then
(exit 0)
else
echo "./configure $configures"
echo "$configures" > npmrc

fi) \
&& (if ["¢$make" = "NOMAKE"]; then
(exit 0)
elif "$make" uninstall install; then
(exit 0)

6.3k install.sh 7 7 [? ? 7 unix | 220:

How can | recognize if it is safe?

| downloaded this shell script from this site.

It's suspiciously large for a bash script. So | opened it with text editor and noticed that behind the code
there is a lot of non-sense characters.

I'm afraid of giving the script execution right with chmod +x jd.sh . Can you advise me how to
recognize if it's safe or how to set it's limited rights in the system?

thank you

security shell sh chmod access-rights

share | improve this question asked Nov 25 '11 at 12:25
! xralf
Whrsde 2,126 <7 © 31981

Principle of Least Privilege

a1
Every program ... should operate using

the least amount of privilege necessary
to complete the job. I'T

—Jerome Saltzer, CACM

Scripting with Least Privilege

Shill
script

Scripting with Least Privilege

Simple security policy

O .
© Shill
S| script
9

Scripting with Least Privilege

icy

Simple security po
O .
© Shill
S| script
9

—

contract

Shill
script

10

Scripting with Least Privilege

icy

Simple security po
O .
© Shill
S| script
9

—

\

contract

Shill
script

a.out

11

Scripting with Least Privilege

Simple security policy

contract

Shill
script

o
© Shill |
S| script \
)
\4 sandbox
a.out

Kernel-based enforcement for executables

12

Scripting with Least Privilege

Simple security policy

Start-to-finish security

contract

Shill
script

o
© Shill |
S| script \
)
\4 sandbox
a.out

Kernel-based enforcement for executables

13

Capability-based security

A capability is an unforgeable token of authority

Bishill only accesses system resources through
operations on capabilities

14

A Secure Shell Script

#lang shill/cap
provide { copy : any/c };

copy = fun(from dir,to _dir) {
for entry in contents(from dir) do {
current = lookup(from dir,entry);
if file?(current) then {
new = create-file(to dir,entry);
write(new, read(current))
}
}
}

15

A Secure Shell Script

#lang shill/cap
provide { copy : any/c };

copy = fun(from dir,to _dir) {
for entry in contents(from dir) do {
current = lookup(from dir,entry);
if file?(current) then {
new = create-file(to dir,entry);
write(new, read(current))
}
}
}

Capability safety: scripts have no capabilities by default

16

Fine-grained security with contracts

#lang shill/cap

provide { copy : {
from : dir/c(+contents, +lookup with { +read }),
to : dir/c(+create-file with { +write }) }
-> void };

require shill/io;

copy = fun(from_dir,to_dir) {
for entry in contents(from_dir) do {
current = lookup(from_dir,entry);
if file?(current) then {
fwrite(current,"evil");
new = create-file(to_dir,entry);
write(new,read(current))
}
}
}

Contracts describe exactly how a script will use its capabilities

17

Fine-grained security with contracts

#lang shill/cap

provide { copy : {
from : dir/c(+contents, +lookup with { +read }),
to : dir/c(+create-file with { +write }) }
-> void };

require shill/io;

copy = fun(from_dir,to_dir) {
for entry in contents(from_dir) do {
current = lookup(from_dir,entry);
if file?(current) then {
fwrite(current,"evil");
new = create-file(to_dir,entry);
write(new,read(current))
}
}
}

18

Programmable sandboxes

#lang shill/cap

provide { cat : {

cat : file/c(+exec,+read,+stat),

file : file/c(+path,+read),

lookup : listof(dir/c(+lookup,+stat)),

libs : listof(file/c(+exec,+read,+stat)),
ro : listof(file/c(+read,+stat)),

out : writeable/c }

-> integer? };
require shill/contracts;
val cat = fun(cat,file, lookups,libs,ro,out) {

exec(cat,["cat", file],stdout = out,stderr = out,
extra = list-append(lookups,libs,ro));

Under the hood

U Black box capability-based sandboxing for executables

+ a few new capability-safe system calls

@ #lang shill/cap:

Capability-safe safe subset of racket/base

+ a set!-transformer to control mutation

+a require-transformer to only import Eshill code

+ a capability-based filesystem library using ffi/unsafe
+ capability contracts using racket/contract

+ a custom reader

20

What's next

Developing commercial version of Shill
Porting to Linux

Plug-in framework for new kinds of capabilities
(processes, databases, ...)

21

