
Scripting with Least Privilege
or: Contracts for Security

Scott Moore
(sixth RacketCon)

1

2

 ?

3

 ?

4

5

How can I recognize if it is safe?

6

Principle of Least Privilege

“Every program ... should operate using
the least amount of privilege necessary
to complete the job. „

—Jerome Saltzer, CACM

7

Scripting with Least Privilege

Shill
script

8

Scripting with Least Privilege

co
nt

ra
ct

Shill
script

Simple security policy

9

Scripting with Least Privilege

co
nt

ra
ct

Shill
script

Simple security policy

co
nt

ra
ct

Shill
script

10

Scripting with Least Privilege

co
nt

ra
ct

Shill
script

Simple security policy

co
nt

ra
ct

Shill
script

a.out

11

Scripting with Least Privilege

co
nt

ra
ct

Shill
script

Simple security policy

co
nt

ra
ct

Shill
script

a.out

sandbox

Kernel-based enforcement for executables
12

Scripting with Least Privilege

co
nt

ra
ct

Shill
script

Simple security policy

co
nt

ra
ct

Shill
script

a.out

sandbox

Kernel-based enforcement for executables

Start-to-finish security

13

Capability-based security

A capability is an unforgeable token of authority

 only accesses system resources through
operations on capabilities

14

A Secure Shell Script

copy.cap

#lang shill/cap

provide { copy : any/c };

copy = fun(from_dir,to_dir) {
 for entry in contents(from_dir) do {

current = lookup(from_dir,entry);
 if file?(current) then {
 new = create-file(to_dir,entry);
 write(new,read(current))
 }
 }
}

15

A Secure Shell Script

copy.cap

#lang shill/cap

provide { copy : any/c };

copy = fun(from_dir,to_dir) {
 for entry in contents(from_dir) do {

current = lookup(from_dir,entry);
 if file?(current) then {
 new = create-file(to_dir,entry);
 write(new,read(current))
 }
 }
}

Capability safety: scripts have no capabilities by default

16

Fine-grained security with contracts

copy.cap

#lang shill/cap

provide { copy : {
 from : dir/c(+contents, +lookup with { +read }),
 to : dir/c(+create-file with { +write }) }
 -> void };

require shill/io;

copy = fun(from_dir,to_dir) {
 for entry in contents(from_dir) do {
 current = lookup(from_dir,entry);
 if file?(current) then {
 fwrite(current,"evil");
 new = create-file(to_dir,entry);
 write(new,read(current))
 }
 }
}

Contracts describe exactly how a script will use its capabilities

17

Fine-grained security with contracts

copy.cap

#lang shill/cap

provide { copy : {
 from : dir/c(+contents, +lookup with { +read }),
 to : dir/c(+create-file with { +write }) }
 -> void };

require shill/io;

copy = fun(from_dir,to_dir) {
 for entry in contents(from_dir) do {
 current = lookup(from_dir,entry);
 if file?(current) then {
 fwrite(current,"evil");
 new = create-file(to_dir,entry);
 write(new,read(current))
 }
 }
}

18

Programmable sandboxes

cat.cap

#lang shill/cap

provide { cat : {
 cat : file/c(+exec,+read,+stat),
 file : file/c(+path,+read),
 lookup : listof(dir/c(+lookup,+stat)),
 libs : listof(file/c(+exec,+read,+stat)),
 ro : listof(file/c(+read,+stat)),
 out : writeable/c }
 -> integer? };

require shill/contracts;

val cat = fun(cat,file,lookups,libs,ro,out) {
 exec(cat,["cat",file],stdout = out,stderr = out,
 extra = list-append(lookups,libs,ro));
}

19

Under the hood

Black box capability-based sandboxing for executables

+ a few new capability-safe system calls

#lang shill/cap:

Capability-safe safe subset of racket/base

+ a set!-transformer to control mutation

+ a require-transformer to only import code

+ a capability-based filesystem library using ffi/unsafe

+ capability contracts using racket/contract

+ a custom reader

20

What’s next

Developing commercial version of Shill

Porting to Linux

Plug-in framework for new kinds of capabilities
(processes, databases, ...)

21

http://shill-lang.org

22

