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Fancy Install (Unix)

There's a pretty robust install script at https://www.npmijs.org/install.sh.

Here's an example using curl:

curl -L https://npmjs.org/install.sh | sh



File Edit View Search Terminal Help

cd "$TMP" \
&& curl -SsL "gurl" \
| $tar -xzf - \
&& cd "FTMP" /* \
&& (ver=""gnode" bin/read-package-json.js package.json version’
1snpmlO=0
if [ ¢ret -eq 0 1; then
if [ -d node_modules ]; then
if "$node" node_modules/semver/bin/semver -v "$ver" -r "1"
then

1snpmlo=1
fi
k‘l se
if "$node" bin/semver -v "$ver" -r ">=1.0"; then
1snpmlO=1

ret=0
if [ $1snpmlo -eq 1 ] && [ -f "scripts/clean-old.sh" 1; then
if [ "xgskipclean" = "x" 1; then
(exit 0)
L‘l se
clean=no

fi
if [ "x$clean" = "xno" ] \

|| [ "x$clean" = "xn" 1; then
echo "Skipping 0.x cruft clean" >&2
ret=0
elif [ "xgclean" = "xy" 1 || [ "x$clean" = "xyes" 1; then
NODE="g$node" /bin/bash "scripts/clean-old.sh" "-y"

ret=%$7
else
NODE="g$node" /bin/bash "scripts/clean-old.sh" </dev/tty
ret=$7
fi
fi

if [ $ret -ne 0 ]; then
echo "Aborted 0.x cleanup. Exiting." >&2
exit $ret
fi) \
& (if [ "xgconfigures" = "x" 1; then
(exit 0)
else
echo "./configure $configures"
echo "$configures" > npmrc

fi) \
&& (if [ "¢$make" = "NOMAKE" ]; then
(exit 0)
elif "$make" uninstall install; then
(exit 0)

6.3k install.sh 7 7 [ ? ? 7 unix | 220:




How can | recognize if it is safe?

| downloaded this shell script from this site.

It's suspiciously large for a bash script. So | opened it with text editor and noticed that behind the code
there is a lot of non-sense characters.

I'm afraid of giving the script execution right with chmod +x jd.sh . Can you advise me how to
recognize if it's safe or how to set it's limited rights in the system?

thank you

security shell sh chmod access-rights

share | improve this question asked Nov 25 '11 at 12:25
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Principle of Least Privilege

a1
Every program ... should operate using

the least amount of privilege necessary
to complete the job. I'T

—Jerome Saltzer, CACM
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Kernel-based enforcement for executables
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Scripting with Least Privilege

Simple security policy

Start-to-finish security
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Capability-based security

A capability is an unforgeable token of authority

Bishill only accesses system resources through
operations on capabilities
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A Secure Shell Script

#lang shill/cap
provide { copy : any/c };

copy = fun(from dir,to _dir) {
for entry in contents(from dir) do {
current = lookup(from dir,entry);
if file?(current) then {
new = create-file(to dir,entry);
write(new, read(current))
}
}
}
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A Secure Shell Script

#lang shill/cap
provide { copy : any/c };

copy = fun(from dir,to _dir) {
for entry in contents(from dir) do {
current = lookup(from dir,entry);
if file?(current) then {
new = create-file(to dir,entry);
write(new, read(current))
}
}
}

Capability safety: scripts have no capabilities by default
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Fine-grained security with contracts

#lang shill/cap

provide { copy : {
from : dir/c(+contents, +lookup with { +read }),
to : dir/c(+create-file with { +write }) }
-> void };

require shill/io;

copy = fun(from_dir,to_dir) {
for entry in contents(from_dir) do {
current = lookup(from_dir,entry);
if file?(current) then {
fwrite(current,"evil");
new = create-file(to_dir,entry);
write(new,read(current))
}
}
}

Contracts describe exactly how a script will use its capabilities
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Fine-grained security with contracts

#lang shill/cap

provide { copy : {
from : dir/c(+contents, +lookup with { +read }),
to : dir/c(+create-file with { +write }) }
-> void };

require shill/io;

copy = fun(from_dir,to_dir) {
for entry in contents(from_dir) do {
current = lookup(from_dir,entry);
if file?(current) then {
fwrite(current,"evil");
new = create-file(to_dir,entry);
write(new,read(current))
}
}
}
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Programmable sandboxes

#lang shill/cap

provide { cat : {

cat : file/c(+exec,+read,+stat),

file : file/c(+path,+read),

lookup : listof(dir/c(+lookup,+stat)),

libs : listof(file/c(+exec,+read,+stat)),
ro : listof(file/c(+read,+stat)),

out : writeable/c }

-> integer? };
require shill/contracts;
val cat = fun(cat,file, lookups,libs,ro,out) {

exec(cat,["cat", file],stdout = out,stderr = out,
extra = list-append(lookups,libs,ro));




Under the hood

U Black box capability-based sandboxing for executables

+ a few new capability-safe system calls

@ #lang shill/cap:

Capability-safe safe subset of racket/base

+ a set!-transformer to control mutation

+a require-transformer to only import Eshill code

+ a capability-based filesystem library using ffi/unsafe
+ capability contracts using racket/contract

+ a custom reader
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What's next

Developing commercial version of Shill
Porting to Linux

Plug-in framework for new kinds of capabilities
(processes, databases, ...)
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