
Racket in Production
Brian Mastenbrook

CTO Wearable Inc.



_ in Production



Production of _

•Portable wireless flash drives

•A little WebDAV NAS in your pocket

•Useful for lots of things



How to Make Electronics

• Send a contract manufacturer lots of parts

• ???

•Profit!



• They put the pieces together

• You tell them how to make it

•… and how to test it



•Plug it in

• Flip the switch

• If the red light comes on, it’s good



• Plug it in

• Make sure it mounts

• Copy all the preloaded files

• Eject the drive

• Turn it on

• Connect from a tablet

• Play a video file

• Be sure to turn it off

Lots of manual effort!



The Fraternity of σσσσσσ



σσσσσσ creed

•Design your products to reduce the complexity of 
manufacturing

• Test everything you can before it leaves the factory

•Up front investment in quality can save you money



Two Perspectives on Quality

• Tests passing

• Error message

• Segfault

•Defect rate

•Product return

•Recall



•Program

• Test

•Control



•USB connectivity

•CPU functionality

• SD card interface

•WiFi functionality

•Battery power



Why Racket?

• Flexible, expressible language

• Safety

•Built in cross-platform GUI

•Database library

• Low level networking (UDP)



Test Fixture 1.0

• Embedded fanless PC

•Connects to five devices

•WiFi tested in RF isolation box

• Sensor for RF box lid

•Controls USB power via relays



Lessons learned

•USB hubs suck!

•Modules and contracts are great!

•One computer won’t scale

•Need a distributed system?



Test Fixture 2.0

•A distributed system of BeagleBones!

• Each BeagleBone controls one device under test

•Controller BeagleBone handles shared state



Test Fixture 2.0



Well, that didn't go so 
well...



Lessons learned

•BeagleBones suck!

•Distributed systems are great!

• They recover automatically when things crash

•… after some amount of time



Test Fixture 3.0

•Back to the PC

• Server-class stuff

• Sixteen USB controllers

•WiFi + Bluetooth



Invariants over version

• Lots of things going on asynchronously

•Robust to unexpected conditions

•Needs to always work



Actors and Messages

•Actors are Racket threads

•… which exchange messages

•… and encapsulate state

•Controller

•Programmer

•GUI

• External interaction



Untyped to typed

1.0: Untyped with contracts

2.0: Limited use of typed, removed before deployment

3.0: Modules and messages are typed, states are 
dynamic



Typed Messages

(define-message ping ([x : Number]))

(define-message pong ())

(define-message set-target

([t : Thread]))



State Machines

(define-state-machine ping-ponger

([state : Number 0]

[target : (Option Thread) #f])

#:initial start

#:problem start

...)



Transitions

(define-state start

[#:timeout #f]

[#:enter]

(define-transition set-target

(printf "got a target: ~a\n" t)

(set-ping-ponger-target! context t)

(goto-state 'send-ping)))



Demo



Lessons Learned

•Modules and contracts are great

• Types are even better

•Macros are great

• Find the right encoding for the problem domain


