Racket in Production

Brian Mastenbrook
CTO Wearable Inc.

AlIrsSstashe.



~ in Production

AlIrsStashe.



Production of _

SanJisk

* Portable wireless flash drives
* A little WebDAV NAS in your pocket
e Useful for lots of things

-

AN |
~3
N
tey

-

\’
— |
~ |
L & &
tr
Vi
ﬁ-‘

AiIrstashe.



How to Make Electronics

* Send a contract manufacturer lots of parts
« P77

* Profit!

AlIrsSstashe.



* They put the pieces together
*You tell them how to make it
e ...and how to test it

AlIrsSstashe.



*Plugitin

* Flip the switch
* If the red light comes on, it’s good

AlIrsStashe.



*Plugitin

* Make sure it mounts
* Copy all the preloaded files
* Eject the drive

* Turn it on

* Connect from a tablet
* Play a video file

* Be sure to turn it off

AiIrstashe.

Lots of manual effort!



The Fraternity of cocooo

AlIrsSstashe.



000000 creed

* Design your products to reduce the complexity of
manufacturing

* Test everything you can before it leaves the factory
* Up front investment in quality can save you money

AiIrstashe.



Two Perspectives on Quality

* Tests passing * Defect rate
* Error message * Product return
* Segfault * Recall

AiIrstashe.



* Program
* Test
* Control

AlIrsStashe.



* USB connectivity
* CPU functionality
* SD card interface
* WiFi functionality
* Battery power

AlIrsSstashe.



Why Racket?

* Flexible, expressible language
 Safety

* Built in cross-platform GUI

* Database library

* Low level networking (UDP)

AiIrstashe.



Test Fixture 1.0

* Embedded fanless PC

* Connects to five devices

* WiFi tested in RF isolation box
* Sensor for RF box lid

* Controls USB power via relays

AiIrstashe.



Lessons learned

* USB hubs suck!

* Modules and contracts are great!
* One computer won’t scale

* Need a distributed system?

AiIrstashe.



Test Fixture 2.0

* A distributed system of BeagleBones!
* Each BeagleBone controls one device under test
* Controller BeagleBone handles shared state

AiIrstashe.



Test Fixture 2.0

AirsSstashe.




Well, that didn't go so
well...

AiIrstashe



Lessons learned

* BeagleBones suck!
* Distributed systems are great!
* They recover automatically when things crash

e ... after some amount of time

AiIrstashe.



Test Fixture 3.0

* Back to the PC

* Server-class stuff

* Sixteen USB controllers
* WiFi + Bluetooth

AlIrsSstashe.



Invariants over version

* Lots of things going on asynchronously
* Robust to unexpected conditions
* Needs to always work

AiIrstashe.



Actors and Messages

* Actors are Racket threads

e ... which exchange messages
e ... and encapsulate state

* Controller

* Programmer

* GUI

 External interaction

AiIrstashe.



Untyped to typed

1.0: Untyped with contracts
2.0: Limited use of typed, removed before deployment

3.0: Modules and messages are typed, states are
dynamic

AiIrstashe.



Typed Messages

(define-message ping ([x : Number]))
(define-message pong ())

(define-message set-target
([t : Thread]))

AiIrstashe.



State Machines

(define-state-machine ping-ponger
([state : Number 0]
[target : (Option Thread) #f])
#:1initial start
#:problem start

)



Transitions

(define-state start

H#:timeout #f]

#:enter]

(define-transition set-target
(printf "got a target: ~a\n" t)
(set-ping-ponger-target! context t)
(goto-state 'send-ping)))

AiIrstashe.




Demo

AlIrsStashe.



Lessons Learned

* Modules and contracts are great

* Types are even better

* Macros are great

* Find the right encoding for the problem domain

AiIrstashe.



