An Object-Oriented World

David Van Horn

Background €/ Motivation

The first year

Fall

Discrete

Fundies |

Spring

Logic & Comp

Fundies |

Industrial co-op

The first year

Fall Discrete

Spring Logic & Comp

Industrial co-op

The first year

Untitled - DrRacket
Untitled ¥ (define ..)v Save [] Step el Check Syntax Q, Run &

;. tact : nat -> nat
(check-expect (fact 0) 1)
HOW TO DESIGN PROGRAMS (check-expect (fact 5) 120)
(define (fact n)
(cond [(zero? n) 1]
An Introduction to Programming and Computing [else (* n (fact (subl n)))1))

Language: Beginning Student; memory limit: 1024 MB.
Both tests passed!

Muatthias Robert Bruce Muatthew Shriram e
Felleisen RAndler Flau Krishna mur thi

The first day

rocket.rkt — DrRacket
rocker.rkt ™ (define ...} ¥ Check Syntax @, Step «l: Run 2 Stop @

#lang htdp/bsl

(require 2htdp/image)

(require 2htdp/universe)

; Use the rocket key to 1insert the rocket here,

A
(define ROCKET "a]
(define WIDTH 100)
(define HEIGHT 300)
(define MT-SCENE (empty-scene WIDTH HEIGHT))
HOW TO DESIGN PROGRAMS : A World 1s a Number.
; Interp: distance from the ground in AU.
: render : World -> Scene
(check-expect (render 0)
An Introduction to Programming and Computing (place-image ROCKET (/ WIDTH 2) HEIGHT MT-SCENE))
(define (render h)
(place-image ROCKET
(/ WIDTH 2)
(- HEIGHT h)
MT-SCENE))

Matthias Robert Bruce Mutthew Shriram . : . W Iy 1
Felleisen Rndler Flan Krishna mur thi ; next : World -> World

(check-expect (next 0) 7)
(define (next h)
(+ h 7))

(big-bang 0
(on-tick next)
(to-draw render))

Language: htdp/bsl; memory limit: 1024 MB.
511
>

The first day

How to Design Classes

Data: Structure and Organization

Matthias Felleisen
Matthew Flatt

Robert Bruce Findler
Kathryn E. Gray
Shriram Krishnamurthi
Viera K. Proulx

Designing with Class

The first day

rocket-oo.rkt ™ (define ...)™ Check Syntax @ Step el

l: rocket-oo.rkt 2: rocket.rkt

#lang classO
(require 2htdp/image)

A
(define ROCKET Eﬁ)
(define WIDTH 100)
(define HEIGHT 300)
(define MT-SCENE (empty-scene WIDTH HEIGHT))
A World 1s a (new world% Number).
; Interp: height represents distance from the ground 1in AU.
(define-class world%
(fields height)
; on-tick : -> World
(define/public (on-tick)
(new world% (add1 (field height))))
; to-draw : -> Scene
(define/public (to-draw)
(place-image ROCKET
(/ WIDTH 2)
(- HEIGHT (field height))
MT-SCENE)))

Welcome to DrRacket, version 5.1.2.2--2011-07-09(79ed%3a/a) [3m].
Language: class0; memory limit: 1024 MB.

> (require class0/universe)
> (big-bang (new world% 0))

The first day

rocket-oo.rkt ™ (define ...)™ Check Syntax @ Step el

1: rocket-oo.rkt

#lang classO
~agquire 2htdp/lme

A
(define ROCKET Eﬁ)
(define WIDTH 100)
(define HEIGHT 300)
(define MT-SCENE (empty-scene WIDTH HEIGHT))
A World 1s a (new world% Number).
; Interp: height represents distance from the ground 1in AU.
(define-class world%
(fields height)
; on-tick : -> World
(define/public (on-tick)
(new world% (add1 (field height))))
; to-draw : -> Scene
(define/public (to-draw)
(place-image ROCKET
(/ WIDTH 2)
(- HEIGHT (field height))
MT-SCENE)))

Welcome to DrRacket, version 5.1.2.2--2011-07-09(79ed%3a/a) [3m].
Language: class0; memory limit: 1024 MB.

> (require class0/universe)
> (big-bang (new world% 0))

The first day

rocket-oo.rkt ™ (define ...)™ Check Syntax @ Step el

1: rocket-oo.rkt

#lang classO
~agquire 2htdp/lme

A
(define ROCKET Eﬁ)
(define WIDTH 100)
(define HEIGHT 300)
(define MT-SCENE (empty-scene WIDTH HEIGHT))
A World 1s a (new world% Number).
; Interp: height represents distance from the ground 1in AU.
(define-class world%
(fields height)
; on-tick : -> World
(define/public (on-tick)
(new world% (add1 (field height))))
; to-draw : -> Scene
(define/public (to-draw)
(place-image ROCKET
(/ WIDTH 2)
(- HEIGHT (field height))
MT-SCENE)))

Welcome to DrRacket, version 5.1.2.2--2011-07-09(79ed%3a/a) [3m].
Language: class0; memory limit: 1024 MB.

> (require class0/universe)
> (big-bang (new world% 0))

The next day

snake.rkt™ (define ...)™ Check Syntax @, Debug @ Macro Stepper #'§ Run 2 Stop @

#lang class1

(define-class snake%
(fields dir segs)

(cons Seg [Listof Seg]) -> [Listof Seg]
;» Drop the last segment from the list of segs.

(define/public (drop-last segs)
(cond [(empty? (rest segs)) empty]
[else (cons (first segs)
(drop-last (rest segs)))1))

You losé€

(define/public (head) ;; -> Seg
(first (field segs)))

;» Dir -> Snake

;; Change direction of this snake.

(define/public (change-dir dir)
(new snake% dir (field segs)))

. -> Seg
;: Compute the next head segment.
(define/public (next-head)

(send (head) move-dir (field dir)))

Food -> Boolean
Is this snake eating the given food?

FrlmEsmm foailhlaes Ffamdasmad FamaA™

(new seg% 9 5)
(new seg®% 8 5))) (new food% 7 2
7))

All 28 tests passed!
>

The next day

o Oy tron.rkt - DrRacket

tron.rkt ™ (define ..)> Check Syntax @, Debug @ Macro Stepper #'§ Run #° Stop (@

#lang class2

(define-class game%
(fields p1 p2)

v+ IWorld -> Universe
v+ Ignore new worlds.
(check-expect ((game% c1 c2) . on-new iworld1)
(just (game% c1 c2)))
(define/public (on-new 1w)
(make-bundle this empty empty))

v+ => Universe
»:» Advance this unilverse one tick.
(check-expect ((game% c1 c2) . on-tick)
(make-bundle ((game% c1 c2) . tick)
((game% c1 c2) . broadcast)
empty))
(check-expect ((game% c1 c2) . tick . on-tick)
(make-bundle ((game% c1 c2) . tick)
((game% c1 c2) . tick . end)
empty))

(define/public (on-tick)

Welcome to DrRacket, version 5.1.2.2--2011-07-09(79ed93a/a) [3m].
Language: class2; memory limit: 1024 MB.

All 54 tests passed!
> (launch-many-worlds (serve) (play LOCALHOST) (play LOCALHI

The next day

calculus.rkt ¥ (define ...)* Check Syntax @, Debug @ Macro Stepper #'Y Run &

calculus.rkt - DrRacket

#lang classs

o A [IFun X ¥] implements:

(deflne-interface 1fun<k>
[:: apply : X -> ¥
»+ Apply this function to the given argument.
applyl)

 [IFun Number Number]
(define-class sqr%
(i1mplements 1fun<%>)
(define/public (apply x)
(* x X)))

0 [IFun [IFun Number Number] [IFun Number Number]]
(define ep 0.0001)
(define-class derivk
7 [IFun Number Number] -> [IFun Number Number]
(define/public (apply 1)
(local [(define-class T*
;: Number -> Number
(define/public (apply x)
(/ (- (f . apply (+ x ep))
(f . apply (- x ep)))
(* 2 ep))))]
(new T%))))

The next day

DICE WARS!

Players

2

(5+2+1+2+3+6+3+4+5=31) attacked (5+3=8)

Not your turn.

Player 1 Player 2

World signed up VS
(object:playing® ‘#hash(i# <iworld> . (object:playe 24 [1 7
-> World: (start 2 ({2 Player 2) (1 Player 1)) ({({1 2

-» World: (start 1 (({2 Player 2) (1 Player 1)) (((1 2

== World: twrn

World -=>: (name Rose-Al)

(object:playing® '#hashi(#<iworld= . (objectplayer® #<iworld= "Player 2" 2)) (#=

-= World: error

World ->: (attack 2 0)

(object:playing® ‘#hash((#<iworld> . (objectplayer® #<iworld> "Player 2" 2)) (¥«

-> World: (attack 2 (5 4 1 [(((2 Player 2) (1 Player 1)) (I

-> World: (attack 2 (5 4 2 b 4) (((2 Player 2) (1 Player 1)) (I

World ->: done

ed

(¥ |
LA
Led

The first year

*|nheritance *Mixins
*|nterfaces *QOverriding
*Distributed programming ~ *Visitors
*Delegation *Mutation
*Abstraction *xEquality
*|nvariants *Implementing OO
*xUnit testing * Java

*Random testing * Generics

* [ypes *Ruby

*xArtificial intelligence

...apologies to John Woo

The first year

800 Fundies Il (Honors) Introduction to Class-based Program Design

| I\ Fundies Il (Honors) Introduction... Lt

) (@) () (D] oo

Fundies IT
(Honors)
Introduction to

up next —+

POADOBES 00 (NONORS)
INTROPYCTION 7O CLAS3=BRASED PROGRAN DESIGN

Spring, 2011

The course studies the class-based program design and the design of abstractions that support the design of
reusable software and libraries. It covers the principles of object oriented program design, the basic rules of
program evaluation, and examines the relationship between algorithms and data structures, as well as basic
techniques for analyzing algorithm complexity.

The course is suitable for both CS majors and non-majors. It assumes that student has been introduced to the
basic principles of program design and computation.
Prerequisites

Jfirst, experiment later.

The course assumes proficiency with the systematic design of programs and some mathematical maturity. It
demands curiosity and self-driven exploration and requires a serious commitment to practical hands-on
programming,

up next —+

The first year

|00 Fundies Il (Honors) Introduction to Class-based Program Design

| N Fundies II (Honors) Introduction... +
EJN(M

< prev up next—

(all-but-last (field segs)))))

PROGBAL DESIGH

This relies on a helper function, all-but-last, which is straightforward to write
(recall that segs is a non-empty list):

_ _ _ : Nyt . .)
(check-expect (all-but-last <1?St ”‘{”)I)' fmpty)_ o the design of abstractions that support the design of
(check-expect (all-but-last (1list "y" "x")) (list "y")) of object oriented program design, the basic rules of

veen algorithms and data structures, as well as basic

(define (all-but-last 1s) yrs. It assumes that student has been introduced to the
(cond [(empty? (rest 1s)) empty]
[else (cons (first 1s)
(all-but-last (rest 1s)))1))

The grow method is much like move, except that no element is dropped from the e e
segments list:
sign of programs and some mathematical maturity. It
(check-expect (send (new snake} "right" (list (new segl 0 0))) grow) ires a serious commitment to practical hands-on
(new snake} "right" (list (new segl 1 0)
(new seg’% 0 0))))

(define/public (grow) - prev up Dext —
(new snake
(field dir)
(cons (send (first (field segs)) move (field dir))
(field segs))))

Now let’s write the turn method:

(check-expect (send (new snake}, "left" (list (new segl O 0))) turn "up")

(new snake), "up" (list (nmew seglk 0 0))))

(define/public (turn d)
(new snakey, d (field segs)))

And finally, draw:

(check-expect (send (new snake) "left" (list (new seg) O 0))) draw MT-

SCENE)
(send (new seglk O 0) draw MT-SCENE))

(define/public (draw scn)
(foldl (XA (s scn) (send s draw scn))

The first year

800 Fundies Il (Honors) Introduction to Class-based Program Design

N Fundies Il (Honors) Introduction... Lt |

8 00 1 Class O

J N 1 Class O

4.7 Representing |:/41. | N e (Q’ ["] m [ﬂ '] [Feedhack A

Fundies I1
(all-but-last (field segs))))) (Honors) « prev up next —»
Introduction to
Class-based
Program Design 1 Class 0

This relies on a helper function, all-but-last, which is straightforwarg
(recall that segs is a non-empty list):

(check-expect (all-but-last (list "x")) empty))
(check-expect (all-but-last (list "y" "x")) (list "y")) Class system #lang class0
Class 0
Class | (require module-nams ...)
Class 2
(define (all-but-last 1s) C:.as.\.'!
(cond [(empty? (rest 1s)) empty] Class 4

[else (cons (first 1s) e (defi lass class
(all-but-last (rest 1s)))]1)) e ,nererans crassmaane

. figlds-spec
. . . = | Class0)
The grow method is much like move, except that no element is dropped method-spec ...)
segments list:

Imports all the modules named module-names.

On this page:

i fields-spec
(check-expect (send (new snake% "right" (list (new seg} 0 0) TEIULTE y

(new snake’, "right" (list (new seg) 1 0) define-class {fields field-name ...)
(new seg¥% 0 0)))) this
fields
define/public
. . bod
(define/public (grow) define/private °dy)

method-spec {define/public (method-name arg ...)

(new snake}, f— (define/private (method-name arg ...)
(field dir) field body)

(cons (send (first (field segs)) move (field dir)) -
(field segs)))) 1.1 Object-oriented Defines a new class named class-name with fields field-names and methods method-names. The class has

. l'“]'“iB*f“'T”ti’ one additional method for each field name field-name, which access the field values.
1.1 Big bang

- o n n 3 9 big-ban . - . . .) -
(check-expect Esend (nzW7 Sf}aka(l?eit((list ;ng"o??%f 00Q e Methods defined with define/public are accessible both inside and outside of the class definition, while
new snakej up 1s new segh -

I methods defined with define/private are only accessible within the class definition.
on-key

(define/public (turn d) on-release To refer to a field within the class definition, use (field field-name).
(new snakey, d (field segs)))

Now let’s write the turn method:

on-mouse

And finally, draw: to-draw Methods may be invoked within the class definition using the function call syntax (method-name arg ...),
" Eick-rata but must be invoked with send from oustide the class definition as in (send object method-name arg ...).
(check-expect (send (new snakej, "left" (list (new segl 0 0)) stop-when
SCENE) check-with
(send (new segl O 0) draw MT-SCENE)) record?
state
™ 112 Universe To construct an instance of class-name, US€ (new class-name arg ...} With as many arguments as there are

(define/public (draw scn) universe ficlds in the class.
(foldl (XA (s scn) (send s draw scn))

The name +his is implicitly bound to the current object, i.e. the object whose method was called.

on-new
on-msg this

on-tick (fields id ...)
tick-rate

(define/public (method-name id ...) body)

The first year

800 Fundies Il (Honors) Introduction to Class-based Program Design

N Fundies Il (Honors) Introduction... Lt |

8 00 1 Class O

J N 1 Class O

4.7 Representing |:/41. | N e (Q’ ["] m [ﬂ '] [Feedhack A

Fundies I1
(all-but-last (field segs))))) (Honors) « prev up next —»
Introduction to
Class-based
Program Design 1 Class 0

This relies on a helper function, all-but-last, which is straightforwarg
(recall that segs is a non-empty list):

(check-expect (all-but-last (list "x")) empty))

(check-expect (all-but-last (list "y" "x")) (list "y")) Class system #lang class0

Class 0
Class | (require module-name ...)
Class 2
(define (all-but-last 1s) Class 3
(cond [(empty? (rest 1s)) empty] S
[else (cons (first 1s) Class 5 .
(all-but-last (rest 1s)))])) [dcf:l_nc--class e
| Class 0 figlds-spec

The grow method is much like move, except that no element is dropped " N method-spec ...) & M D
segments list:

Imports all the modules named module-names.

9 class-system-03-28.plt Info
On this page:

(check-expect (send (new snake) "right" (list (new segl 0 0) require fields-spec "‘! class-system-03-28.plt 74 KB
(new snakey, "right" (list (new segl 1 0) define-class — | Modified: April 14, 2011 11:11 AM

(new segl, 0 0)))) this
¢ fields P Spotlight Comments:
. . method-spac

define/public
(define/public (grow) define/private
(new snake}, e More Info:
(field dir) field

(cons (send (first (field segs)) move (field dir)) -

(field segs)))) 1.1 Object-oriented Defines a new class named ¢lass-name with fields

| l'“]'“iB*f“'T”ti’ one additional method for each field name field-m = FroView:
1.1 Big bang

_ o n n 3 Y big-ban - H
(check-expect Esend (niwys?aka (l?eit((List ;ngwoff% 00Q e Methods defined with define/public are accessibl
new snake/ up 1s new segh -

I methods defined with define/private are only ace

on-key

(define/public (turn d) on-release To refer to a field within the class definition, use (£
(new snakey, d (field segs)))

Ceneral:

MName & Extension:
Open with:

Now let’s write the turn method:

on-mousea

.) to-draw Methods may be invoked within the class definition
And finally, draw: ~ : . . !
e but must be invoked with send from oustide the ¢

(check-expect (send (new snake) "left" (list (new segl 0 0)) Stop-when

hook-switl . . . Sharing & Permissions:
SCENE) ond ¢ 40 0) draw HI-SCENEY) ;Z;:uf . The name this is implicitly bound to the current ob
sen new segh raw - U

5tate
WSl 117 Universe To construct an instance of class-name, US¢ (new class-name arg ...) With as many arguments as there are

(define/public (draw scn) universe ficlds in the class.

(foldl (A (s scn) (send s draw scn)) OTi=ThEnr

on-msg this
on-tick (fields id ...)

tick-rate

(define/public (method-name id ...) body)

The first year

a NN

N Fundies Il (Honors) Introduction... u +

Fundies Il (Honors) Introduction to Class-based Program Design

800 1 Class O

—
(™ B AT

(all-but-last (field segs)))))

This relies on a helper function, all-but-last, which is straightforwar:

(recall that segs is a non-empty list):

(check-expect (all-but-last (1]
(check-expect (all-but-last (1|

[List
f the

(define (all-but-last 1s)
(cond [(empty? (rest 1s)) em
[else (cons (first 1s)
(all-but-1

The grow method is much like move,
segments list:

(check-expect (send (new snake
(new snake}, "rig

(define/public (grow)
(new snake},
(field dir)
(cons (send (first (fi
(field segs))))

Now let’s write the turn method:

(check-expect (send (new snake
(new snake} "up"

(define/public (turn d)
(new snake’ d (field segs)

And finally, draw:

(check-expect (send (new snake
SCENE)
(send (new segh

(define/public (draw scn)
(foldl (A (s scn) (send s

o melan

-

J N 1 Class O

—
4.7 Representing| [-« | N

Q) (@ -] [#] [E -] [Feedback ~

> Fundies I1
(Honors)

+ pIevV up next—*

Introduction to

Class-based

Dhrrnawmi, rra Thinaetaees A T N
main.rkt - DrRacket

N

main.rkt* (define ...}*

Check Syntax @, Debug @ Macro Stepper #'§ Run & Stop @

#lang racket/base
(require "define-class.rkt"
(except-in lang/htdp-intermediate-lambda
define require #%module-begin
define-struct image? quote #%app
check-expect check-within
check-error check-range check-member-of)
"../class1/test-engine/racket-tests.rkt")

(require (only-in "../classO/main.rkt" define-struct #%module-begin)
(for-syntax racket/base syntax/parse))

(require (prefix-in 1sl+: lang/htdp-intermediate-lambda))

(require (prefix-in r: racket))

(provide (all-from-out "define-class.rkt")
(all-from-out lang/htdp-intermediate-lambda)
quote class
#%module-begin |.| (rename-out [my-app #%app])
define test require provide define-struct begin
all-defined-out only-in all-from-out exclept-in
(except-out (all-from-out "../class1/test-engine/racket-tests.rkt")
test))

(define-syntax (my-app stx)
(syntax-parse stx #:literals (|.])
[(_ revr:expr |.| meth:id (~and (~not |.|) args:expr)
#'(send rcvr meth args ...)]
[(_ rcvr:expr |.| meth:id (~and (~not |.|) args:expr) ... rest:expr ...)
#'(my-app (send rcvr meth args ...) rest ...)]
[(_e ...)
#'(#%app e ...)1))
(define-syntax (|.| stx)
(raise-syntax-error #f "not legal outside of method send syntax" stx))

5 O |9 class-system-03-28.plt Info

class-system-03-28.plt 74 KB
J Modified: April 14, 2011 11:11 AM

otlight Comments:

neral:

e Info:

me & Extension:

en with:

BViEwW:

aring & Permissions:

z arg ...) with as many arguments as there are

The first year

a NN

N Fundies Il (Honors) Introduction...

Fundies Il (Honors) Introduction to Class-based Program Design

(il

800 1 Class O

—
(™ B AT

(all-but-last (field segs)))))

This relies on a helper function, all-but-last, which is straightforwar:

(recall that segs is a non-empty list):

o melan

N

1 Class O

-

y N

4.7 Representing

|'/~1- | N

Q) (@ -] [#] [E -] [Feedback ~

> Fundies I1
(Honors)

+ pIevV up next—*

Introduction to

Class-based

Dhrrnawmi, rra Thinaetaees A T N
main.rkt - DrRacket

(check-expect (all-but-last (1]
(check-expect (all-but-last (1|

main.rkt* (define ...}*

Check Syntax @, Debug @ Macro Stepper #'§ Run & Stop @

[List
f the

(define (all-but-last 1s)
(cond [(empty? (rest 1s)) em
[else (cons (first 1s)
(all-but-1

The grow method is much like move,
segments list:

(check-expect (send (new snake
(new snake}, "rig

(define/public (grow)
(new snake},
(field dir)
(cons (send (first (fi
(field segs))))

Now let’s write the turn method:

(check-expect (send (new snake
(new snake} "up"

(define/public (turn d)
(new snake’ d (field segs)

And finally, draw:

SCENE)
(send (new segh

(define/public (draw scn)
(foldl (A (s scn) (send s

#lang racket/base

(require

(require

(require
(require

(provide

"define-class.rkt"
(except-in lang/htdp-intermediate-lambda
define require #%module-begin
define-struct image? quote #%app
check-expect check-within
check-error check-range check-member-of)
"../class1/test-engine/racket-tests.rkt")

(only-in "../classO/main.rkt" define-struct #%module-begin)
(for-syntax racket/base syntax/parse))

(prefix-in 1sl+: lang/htdp-intermediate-lambda))

(prefix-in r: racket))

(all-from-out "define-class.rkt")

(all-from-out lang/htdp-intermediate-lambda)

quote class

#%module-begin |.| (rename-out [my-app #%app])

define test require provide define-struct begin

all-defined-out only-in all-from-out exclept-in

(except-out (all-from-out "../class1/test-engine/racket-tests.rkt")
test))

| (defime=STTTax

(check-expect (send (new SQ\

syntax-parse stx

my-app StX

|
#'(
[(—

[(_

(define-
(raise

=t M;J t=not |.|) args:expr)
cea)]

revr:expr |.| meth:id (~and
#'(my-app (send rcvr meth args

el L E™ o) met e
=== - .

send recvr meih args
(=not |.|) args:expr) ... vaa)

...) rest ...)]

rest:expr

e ...)
#' (#%app e

caa)1))

syntax (|.| stx)

-syntax-error #f "not legal outside of method send syntax" stx))

5 O |9 class-system-03-28.plt Info

class-system-03-28.plt 74 KB

J Modified: April 14, 2011 11:11 AM

otlight Comments:

neral:

e Info:

me & Extension:

en with:

BViEwW:

aring & Permissions:

z arg ...) with as many arguments as there are

Magic Eight Ball

The next years

Bigger data designs

A good story for constructors
Better error messages

Types In class34

Whalesong?

Thanks!

http://www.ccs.neu.edu/course/cs2510h/

{dvanhorn,samth}@ccs.neu.edu

http://www.ccs.neu.edu/course/cs2510h/
http://www.ccs.neu.edu/course/cs2510h/
http://www.ccs.neu.edu/course/cs2510h/
http://www.ccs.neu.edu/course/cs2510h/

